МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени И. Т. ТРУБИЛИНА»

ФАКУЛЬТЕТ МЕХАНИЗАЦИИ

УТВЕРЖДАЮ
Декан факультета механизации
А.А. Титученко
«19 » мая 2022 г.

Рабочая программа дисциплины

Теоретические основы в агроинженерии

(Адаптированная рабочая программа для лиц с ограниченными возможностями здоровья и инвалидов, обучающихся по адаптированным основным профессиональным образовательным программам высшего образования)

Направление подготовки 35.04.06 Агроинженерия

Направленность

«Технологии и средства механизации сельского хозяйства»

Уровень высшего образования

Магистратура

Форма обучения

очная, заочная

Краснодар 2022 г. Рабочая программа дисциплины «Теоретические основы в агроинженерии» разработана на основе ФГОС ВО 35.04.06 «Агроинженерия» утвержденного приказом Министерства образования и науки РФ 26.07.2017 г. № 709

Автор:

д-р техн. наук, профессор

К.А. Сохт

Рабочая программа обсуждена и рекомендована к утверждению решением кафедры «Процессы и машины в агробизнесе» от 16.05.2022 г., протокол $Noldsymbol{0}$ 14.

И.о. заведующего кафедрой, к. техн. н., доцент

С.К. Папуша

Рабочая программа одобрена на заседании методической комиссии факультета механизации, протокол № 9 от 18.05.2022 г.

Председатель методической комиссии, к.техн.н., доцент

О.Н. Соколенко

Руководитель основной профессиональной образовательной программы д-р техн. наук, профессор

В.Ю. Фролов

1 Цель и задачи освоения дисциплины

Целью освоения дисциплины «Теоретические основы в агроинженерии» является формирование, знаний умений и навыков использования методов решения задач при разработке новых технологий, а также разработке математических моделей, проведении теоретических и экспериментальных исследований процессов, явлений и объектов, в области механизации сельскохозяйственного производства.

Задачи:

- сформировать знания основ теории и расчета рабочих и технологических процессов средств комплексной механизации производства продукции растениеводства;
- сформировать умения в области технологического проектирования конструкций почвообрабатывающих и уборочных машин;
- овладеть методикой обоснования оптимальных регулировочных параметров узлов и механизмов машин.

2 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

В результате освоения дисциплины формируются следующие компетенции:

ПК-3 Способен разрабатывать физические и математические модели, проводить теоретические и экспериментальные исследования процессов, явлений и объектов, относящихся к механизации, сельскохозяйственного производства.

В результате изучения дисциплины «Теоретические основы в агроинженерии» обучающийся должен получить знания и навыки для успешного освоения следующих трудовых функций трудовых действий:

Профессиональный стандарт Специалист в области механизации сельского хозяйства» (утвержден приказом Министерства труда и социальной защиты РФ 2.09.2020 г., № 555н;

Трудовая функция: Разработка перспективных планов и технологий в области механизации и автоматизации процессов в сельскохозяйственной организации E/01.7.

Трудовые действия:

 Проектирование механизированных и автоматизированных технологических процессов в сельском хозяйстве с использованием методов математического моделирования;

- Разработка планов модернизации оборудования, технического перевооружения сельскохозяйственной организации, внедрения средств комплексной механизации и автоматизации технологических процессов;
- Разработка мероприятий по повышению производительности труда при техническом обслуживании, ремонте и эксплуатации сельскохозяйственной техники.

3 Место дисциплины в структуре ОПОП ВО

«Теоретические основы в агроинженерии» является дисциплиной является дисциплиной части формируемой участниками образовательных отношений ОПОП ВО подготовки обучающихся по направлению 35.04.06 «Агроинженерия» направленность «Технологии и средства механизации сельского хозяйства».

4 Объем дисциплины (180 часа, 5 зачетных единиц)

Duran vinofinoŭ neforma	Объем, часов				
Виды учебной работы	Очная	Заочная			
Контактная работа	51	23			
в том числе:					
— аудиторная по видам учебных занятий	46	18			
— лекции	16	6			
— практические (лабораторные)	30	12			
— внеаудиторная	5	5			
— зачет	_	_			
— экзамен	3	3			
— защита курсовых работ (проектов)	2	2			
Самостоятельная работа в том числе:	129	157			
— курсовая работа (проект)	18	18			
— прочие виды самостоя- тельной работы	111	139			
Итого по дисциплине	180	180			

5 Содержание дисциплины

По итогам изучаемой дисциплины студенты (обучающиеся) сдают экзамен, выполняют курсовую работу.

Дисциплина изучается на 1-ом курсе, во 2-ом семестре

Содержание и структура дисциплины по очной форме обучения

No	№ Наименование темы		стр		ы учебной рабо стоятельную раб и трудоемкость	боту студентов
п/п	с указанием основных вопросов	Формируемые компетенции	Семестр	Лекции	Практические занятия (лабораторные занятия)	Самостоятельная работа
1	Основы теории машин для основной обработки почвы 1.1 Условия равновесия плугов. 1.2 Теоретические основы проектирования конструктивной схемы плуга.	ПК-3	2	2	4	10
2	Основы теории машин для поверхностной обра- ботки почвы. 2.1 техно- логические процессы по- верхностной обработки почвы. 2.2 Теоритические осно- вы расчёта рабочих орга- нов культиватора. 2.3 Основы теории рота- ционных мотыг.	ПК-3	2	2	2	12
3	Основы теории ротационных почвообрабатывающих машин. 3.1 Кинематика рабочих органов фрез с вертикальной осью вращения. 3.2 Расчет параметров фрез с вертикальной осью вращения.	ПК-3	2	-	4	12
4	Основы теории машин для посева и посадки. 4.1 Проектирование сея-	ПК-3	2	2	2	12

No	Наименование темы	Формируемые компетенции	Семестр	само	ы учебной рабо стоятельную раб и трудоемкость	боту студентов
п/п	с указанием основных вопросов	Формиј	Сем	Лекции	Практические занятия (лабораторные занятия)	Самостоятельная работа
	лок с катушечным высевающим аппаратом. 4.2 Проектирование сеялок с пневматическим высевающим аппаратом.					
5	Основы теории машин для внесения удобрений. 5.1 Расчет тарельчатых туковысевающих аппаратов. 5.2 Расчет центробежных туковысевающих аппаратов.	ПК-3	2	2	2	12
6	Основы теории машин для защиты растений от вредителей и болезней. 6.1 Теоретические основы расчета рабочих органов опрыскивателей. 6.2 Оценка качества обработки с/х растений.	ПК-3	2	-	2	10
7	Основы теории рабочих органов машин для заготовки кормов. 7.1 Физикомеханические и технологические свойства кормов. 7.2 Технологические и энергитические параметры рабочих органов косилок. 7.3 Удельная работа резания.	ПК-3	2	-	2	10
8	Теория рабочих органов уборочных машин. 8.1 Основное уравнение работы молотильного барабана. 8.2 Дифференциальная форма основного молотильного барабана. 8.3 Теория расчета параметров соломотряса.	ПК-3	2	4	6	10
9	Основы теории машин для послеуборочной об-	ПК-3	2	2	2	12

№	Наименование темы	уемые энции	стр	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				
п/п	с указанием основных вопросов	Формируемые компетенции	Семестр	Лекции	Практические занятия (лабораторные занятия)	Самостоятельная работа		
	работке зерна. 9.1 Кинематика плоского решета. 9.2 Движение вороха по плоскому решету.							
10	Основы теории машин для разделения зерновых смесей по длине. 10.1 Типы применяемых машин 10.2 Основы расчета параметров цилиндрического триера.	ПК-3	2	2	4	11		
14	Курсовая работа					18		
15	Экзамен			-	-	-		
Ито	Итого			16	30	129		
Bcei	0			16	30	129		

Содержание и структура дисциплины по заочной форме обучения

По итогам изучаемого курса студенты сдают экзамен и выполняют курсовую работу.

Дисциплина изучается на 1-ом курсе, во 2 ом семестре

		компе-		Виды учебной работы, включая самостоятельную работу сту- дентов и трудоемкость (в часах)			
№ п/п	Наименование темы с указанием основных вопросов	Формируемые тенции	Семестр	Лекции	Практиче- ские заня- тия (лабора- торные за- нятия)	Само- стоятель- ная работа	
1	Основы теории машин для основной обработки почвы 1.2 Условия равновесия плугов. 1.2 Теоретические основы проектирования конструктивной схемы плуга.	ПК-3	2	2	2	14	
2	Основы теории машин для поверхностной обработки почвы. 2.1 технологические процессы	ПК-3	2	2		14	

		компе-		Виды учебной работы, включая самостоятельную работу сту- дентов и трудоемкость (в часах)			
№ п/п	Наименование темы с указанием основных вопросов	Формируемые компе- тенции	Семестр	Лекции	Практиче- ские заня- тия (лабора- торные за- нятия)	Само- стоятель- ная работа	
	поверхностной обработки почвы. 2.2 Теоритические основы расчёта рабочих органов культиватора. 2.3 Основы теории ротационных мотыг.						
3	Основы теории ротационных почвообрабатывающих машин. 3.1 Кинематика рабочих органов фрез с вертикальной осью вращения. 3.2 Расчет параметров фрез с вертикальной осью вращения.	ПК-3	2	-	2	14	
4	Основы теории машин для посева и посадки. 4.1 Проектирование сеялок с катушечным высевающим аппаратом. 4.2 Проектирование сеялок с пневматическим высевающим аппаратом.	ПК-3	2	-	2	14	
5	Основы теории машин для внесения удобрений. 5.1 Расчет тарельчатых туковысевающих аппаратов. 5.2 Расчет центробежных туковысевающих аппаратов.	ПК-3	2	-	2	14	
6	Основы теории машин для защиты растений от вредителей и болезней. 6.1 Теоретические основы расчета рабочих органов опрыскивателей. 6.2 Оценка качества обработки с/х растений.	ПК-3	2	-	2	14	
7	Основы теории рабочих органов машин для заготовки кормов. 7.1 Физикомеханические и технологические свойства кормов. 7.2 Технологические и энергитические параметры рабочих	ПК-3	2	-		14	

	Наименование темы	е компе-	d.	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			
№ π/π	гаименование темы с указанием основных вопросов	Формируемые компе- тенции	Семестр	Лекции	Практиче- ские заня- тия (лабора- торные за- нятия)	Само- стоятель- ная работа	
	органов косилок. 7.3 Удельная работа резания.						
8	Теория рабочих органов уборочных машин. 8.1 Основное уравнение работы молотильного барабана. 8.2 Дифференциальная форма основного молотильного барабана. 8.3 Теория расчета параметров соломотряса.	ПК-3	2	2	2	14	
9	Основы теории машин для послеуборочной обработке зерна. 9.1 Кинематика плоского решета. 9.2 Движение вороха по плоскому решету.	ПК-3	2			14	
10	Основы теории машин для разделения зерновых смесей по длине. 10.1 Типы применяемых машин 10.2 Основы расчета параметров цилиндрического триера.	ПК-3				13	
13	Курсовая работа		2	-	-	18	
14	Экзамен		2	-	-	1.57	
Итог				6	12	157	
Bcer	0			6	12	157	

6 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1. Устройство, технологический процесс и регулировки плугов для гладкой вспашки: метод. Указания / сост. Е.И. Трубилин, В. И. Коновалов. – Краснодар: КубГАУ, 2017. – 40 с. Режим доступа:

https://edu.kubsau.ru/file.php/115/Plugi_dlja_gladkoi_vspashki.pdf

2. Сельскохозяйственные машины (устройство, работа и основные регулировки): учеб. пособие /В.А. Романенко и др.- Краснодар: КубГАУ, 2014. — 232 с. — Интернет ресурс: образовательный портал КубГАУ, режим дос-

тупа

https://edu.kubsau.ru/file.php/115/Selskokhozjaistvennye_mashiny_ustroistvo_rabota_i_regulirovka_.pdf

5. Построение конструктивной схемы навесного плуга и определение сил, действующих на плуг и механизм навески: метод. Указания / сост. Е. И. Трубилин, С. К. Папуша, В. И. Коновалов. — Краснодар: КубГАУ, 2017 — 35 с. Режим доступа: https://edu.kubsau.ru/file.php/115/Postroenie_skhemy_navesnogo_pluga_25.04.pd

7 Фонд оценочных средств для проведения промежуточной аттестации

7.1 Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП ВО

Номер семестра	Этапы формирования и проверки уровня сформированности компетенций по дисциплинам, практикам в процессе освоения ОПОП ВО							
ПК-3 Способен разрабатывать физические и математические модели, проводить								
теоретические и экспериментальные исследования процессов, явлений и объектов,								
относя	относящихся к механизации, сельскохозяйственного производства							
2	Моделирование в агроинженерии							
2	Теоретические основы в агроинженерии							
3	Компьютерные технологии в агроинженерной науке и производстве							
2,4	Научно-исследовательская работа							
4	Выполнение и защита выпускной квалификационной работы							

7.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалы оценивания

Планируемые										
результаты освоения компетенций	освоения тельно тельно		хорошо (средний)	отлично (высокий)	Оценочное средство					
ПК-3 Способен разрабатывать физические и математические модели, проводить										
теоретические и экспериментальные исследования процессов, явлений и объектов,										
относящихся к механизации, сельскохозяйственного производства										
ИД-1 _{ПК-7}	Не способен	Способен с	Способен с	На высоком	Устный					
Разрабатыва-	разрабаты-	допущением	допущением	уровне разра-	опрос					
ет физиче-	вать физиче-	ошибок раз-	незначитель-	батывает фи-	Реферат					
ские и мате-	ские и мате-	рабатывать	ных ошибок	зические и	Тесты					
матические	матические	физические	разрабатывать	математиче-	Курсовая					
модели, про-	модели, про-	и математи-	физические и	ские модели,	работа					
водит теоре-	водит теоре-	ческие мо-	математиче-	проводит тео-						
тические и	тические ис-	дели, прово-	ские модели,	ретические						

результаты освоения тельно (пороговый) хорошо (средний) отлично (высокий) Оценственций (минимальный) дит теоретитальные испроцессов, следования процессов, явлений и процессов, явлений и агроинжене-	
тальные ис- процессов, ческие ис- ретические процессов, следования явлений и процессов, объектов в процессов, процессов, объектов в	
объектов, относящихся к механизации, сельскохо-зяйственного производства	

- 7.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций в процессе освоения ОПОП ВО
- 7.3.1 Оценочные средства по компетенции «ПК-3 Способен разрабатывать физические и математические модели, проводить теоретические и экспериментальные исследования процессов, явлений и объектов, относящихся к механизации, сельскохозяйственного производства»

7.3.1.1 Для текущего контроля

Вопросы к устному опросу

- 1. Физико-механические свойства почвы и агротехнические требования к ее обработке.
- 2. Технологический процесс вспашки почвы, профиль борозды и условия оборачиваемости пласта почвы.
 - 3. Рабочая поверхность корпуса плуга как развитие трехгранного клина.
- 4. Типы лемешно-отвальных поверхностей плуга и способы их построения.
- 5.Особенности устройства и работы навесного, полу навесного и прицепного плугов.
- 6. Расчет навесного плуга. Определение усилия в штоке гидроцилиндранавесной системы.
- 7. Расчет навесного плуга. Определение усилия на ободе опорного колеса.
 - 8. Формула академика В.П. Горячкина и ее анализ.

- 9. КПД плуга. Расчет тягового сопротивления плуга по В.П. Горячкину Культиваторы.
- 10. Типы рабочих органов культиваторов. Особенности их работы.
- 11.Основные параметры рабочих органов культиваторов и элементы их расчета.
 - 12.. Размещение рабочих органов культиватора на раме.
 - 13. Способы крепления рабочих органов культиваторов к раме.
 - Зубовые бороны.
 - 14. Классификация зубовых борон, их устройство и регулировки.
- 15.Способы крепления зубьев на раме бороны и требования к их расстановке.
 - 16. Устойчивый ход зубовой бороны, основные требования.
 - 17. Построение зубового поля бороны.
 - 18. Тяговое сопротивление зубовой бороны.

Дисковые орудия.

- 19.Классификация дисковых почвообрабатывающих орудий. Особенности их работы и устройство.
 - 20.Основные параметры дисковых рабочих органов.
 - 21. Расстановка дисков борон и лущильников. Угол атаки.
 - 22.Силы, действующий на дисковые рабочие органы.

Фрезы.

- 23. Кинематика рабочих органов фрез. Уравнение движения.
- 24.Основные параметры технологического процесса работы фрезы.
- 25. Затраты мощности на работу фрезы.

Сеялки.

- 26.Способы посева и посадки и предъявляемые требования.
- 27.Основные параметры катушечного высевающего аппарата. Рабочая длина катушки.
 - 28. Дисковые высевающие аппараты.
 - 29.Пневматические высевающие аппараты.

Кинематический режим работы посадочного аппарата.

- 30.Аппараты для высадки клубней картофеля. Технологический процесс работы вычерпывающего аппарата, расчет его основных параметров.
 - 31. Рабочий процесс сошников.
- 32.Взаимодействие сошников с почвой. Сошники с острым и тупым углами вхождения в почву.
 - 33. Равновесие анкерных и дисковых сошников.
 - 34 . Установка зерновой сеялки на заданную норму высева семян.
- 35. Расчет вылета маркеров сеялки для различных способов вхождения по следу маркера.

Машины для внесения удобрений.

- 36. В иды удобрений и способы их внесения.
- 37. Типы аппаратов для внесения удобрений. Особенности устройства и работы.

- 38. Устройство, работа и регулировки туковой сеялки. Расчет тарельчатого туковысевающего аппарата.
 - 39. Рабочий процесс центробежно-дисковых аппаратов.
- 40. Рабочий процесс барабанных аппаратов для внесения твердых органических удобрений. Расчет скорости движения транспортера и минимальной частоты вращения барабана.
 - 41. Принцип действия машин для разбрасывания жидких удобрений.

Машины для защиты растений от вредителей и болезней

- 42. Методы и способы защиты растений и агротребования
- 43. Расход жидкого ядохимиката при работе опрыскивтаеля
- 44. Критерий качества опрыскивания и их определение
- 45. Расчет расхода ядохимиката опыливателем и степень опыляемости растений

Основы исследований в механизации растениеводства

- 46.Обоснование темы исследований. Формулировка цели и постановка задач исследований.
 - 47.0бъект и предмет исследований. Гипотеза.
 - 48. Понятие теории. Ее компоненты. Теоретический анализ гипотез.
 - 49. Методология, метод и методика.
- 50.Понятие «система» и системный подход в научном исследовании. Сельскохозяйственное производство как система. Дать схему.
- 53. Измерения и их классификация. Приборы и инструменты для измерений различных величин.
- 54.Ошибки средств измерения. Понятие абсолютной, относительной или приведенной ошибки. Предельная относительная ошибка.
 - 55. Статистические характеристики эмпирического распределения
- 56. Коэффициент вариации, ошибка выборочной средней, относительная ошибка выборочной средней. Предельная возможная статистическая ошибка.
- 57. Условия скольжения при срезании растений. Коэффициент скольжения и работа резания.
- 58.Скорости резания стеблей сегментно-пальцевым режущим аппаратом, их определение для аппаратов нормального и низкого резания.
- 59. График пробега активного лезвия сегмента при срезании растений с поля.
- 60. Траектория движения планки мотовил в зависимости от кинематического показателя.
 - 61. Показатели кинематического режима работы мотовила.
- 62. Степень воздействия планки мотовила. Установка вала мотовила по высоте и его вынос.
- 63. Классификация молотильных устройств и их рабочий процесс. Фазы обмолота.
 - 64. Основное уравнение работы молотильного барабана и его анализ.

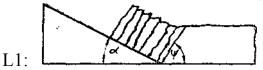
- 65. Анализ работы молотильного устройства исходя из сочетания работоспособности двигателя, барабана и подаваемой хлебной массы. Приход и расход энергии барабана.
 - 66. Выбор скорости движения зерноуборочного комбайна.
 - 67. Уравнение движения клавишного соломотряса и его анализ.
 - 68. Основные параметры клавишного соломотряса и их обоснование.
- 76. Очистка зерноуборочного комбайна. Конструкция, рабочий процесс и регулировки.
 - 69. Кинематика плоского решета. Перемещение, скорость и ускорение.
 - 70. Графики скоростей и ускорений решета грохота комбайна.
- 71. Условие отрыва вороха от грохота комбайна. Определение скорости грохота для различных режимов работы.
- 72. Способы очистки и сортирования зерна. Разделение зерна по аэродинамическим свойствам. Коэффициент парусности и его физический смысл.
- 73. Разделение зерновых смесей по состоянию поверхности зерна и форме.
- 74. Технологический процесс кукурузоуборочных машин. Условия захвата стебля вальцами и обоснование их диаметра.

Тесты

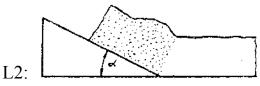
ПК-3 Способен разрабатывать физические и математические модели, проводить теоретические и экспериментальные исследования процессов, явлений и объектов, относящихся к механизации, сельскохозяйственного производства

- 1. Взаимодействие клина с почвой
- 1.2. Теория плуга
- 1. Такие свойства почвы, как прочностные, фрикционные, липкость, пластичность, упругость, вязкость и хрупкость называют
- -: физико-механическими
- +: технологическими
- -: эксплуатационными
- -: техническими
- 2. Выражение $P = \frac{N}{\cos \phi} \sin(\alpha + \phi)$ позволяет вычислить силу
- -: тягового сопротивления плуга
- :тягового сопротивления корпуса плуга
- +: перемещения плоского клина
- -: перемещения рыхлительной лапы культиватора
- -: перемещения дискового сошника
- 3. Последовательность вывода формулы для определения силы перемещения плоского клина в почве

D1: изобразить схему плоского клина

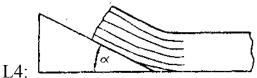

D2: приложить действующие силы

D3: выразить равнодействующую силу нормального давления пласта


D4: спроецировать силы на направление движения

D5: записать условие равновесия

4. Соответствие характера деформации почвы ее механическому составу


R1: средние по механическому составу и влажности

R2: легкие

R3: тяжелые

R4: задернелые, влажные

L5:

R5: каменистые

5. Соответствие типа отвальной поверхности условиям ее применения

L1: крошащие

R1: малосвязные, сыпучие почвы

L2: оборачивающие

R2: сильно связные, задернелые почвы

L3: промежуточные

R3: средние по свойствам почвы

L4:

R4: старопахотные почвы

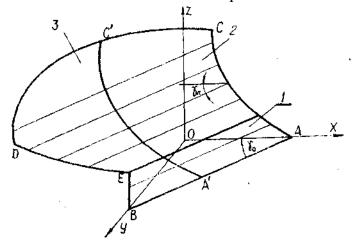
14. Классификация отвальных поверхностей

L1: крошащие

R1: цилиндрические

L2: оборачивающие

R2: винтовые


L3: промежуточные

R3: культурные, полувинтовые

L4:

R4: скоростные

6. Элементы отвальной поверхности

L1: AB

R1: лезвие лемеха

L2: BED

R2: бороздовой обрез

L3: DC[']C

R3: верхний обрез

L4: AC

R4: полевой обрез

R5: A'C'

L5: направляющая парабола

R6:

L6: образующая

- 7. Угол между касательной к отвалу и дном борозды, лежащий в продольновертикальной плоскости
- -:β
- -:γ
- +:α
- 3:-
- 8. Угол постановки лемеха к дну борозды
- -:β
- -:γ
- -:α
- 3:+
- 9. Элементы образования линейчатых отвальных поверхностей
- -:шаблон
- +:образующая
- +:направляющая
- -:касательная

-:линия полевого обреза

10. Условия:

образующая остается параллельной дну борозды; направляющая проходит через пятку лемеха; углы ү постоянны,

характерны для образования ### отвала.

+: цилиндрического

11. Условия:

образующая остается параллельной дну борозды; направляющая расположена на расстоянии 2/3 длины лемеха от его носка;

углы
$$\gamma$$
 изменяются по закону $y = \frac{6.2x}{100 + x^2}$,

характерны для образования ### отвала.

+: культурного

12. Условия:

образующая остается параллельной дну борозды; направляющая проходит через пятку лемеха;

углы
$$\gamma$$
 изменяются по закону $y = \frac{x^2}{2P}$,

характерны для образования ### отвала.

+: полувинтового

13. Условия:

образующая поворачивается относительно дна борозды; направляющая – прямая, параллельная стенке борозды; углы γ изменяются в пределах $32...35^{0}$,

характерны для образования ### отвала.

+: винтового

14. Соответствие разности углов γ_{max} – γ_0 типам отвальных поверхностей

 $L1:5...7^{0}$

R1: культурная L2: 7...15⁰

R2: полувинтовая

L3: const

R3: цилиндрическая

L4: 3...5⁰

R4: скоростная

15. Соответствие углов γ_0 типам отвальных поверхностей

L1: 40...45⁰

R1: культурная

L2: 35...40°

R2: полувинтовая

L3: $45...50^{0}$

R3: цилиндрическая

L4: 35...38⁰

R4: скоростная

16. Последовательность преобразования дуги окружности направляющей кривой в участок параболы

D1: из выбранной точки провести прямую под углом ϵ_0 к горизонту и нормаль к ней

D2: на нормали отложить отрезок, равный радиусу дуги направляющей кривой

D3: провести дугу с центральным углом $(90 - \varepsilon_0)$

D4: нарастить дугу на угол $\Delta \varepsilon = 5...10^{0}$, провести касательную к крайней точке

D5: построить касательные к искомой параболе

Темы рефератов:

- 1. Проблемы механизации основной обработка почвы.
- 2. Проблемы механизации предпосевной обработки почвы.
- 3. Проблемы механизации для почвозащитной системы земледелия.
- 4. Проблемы механизации для культуртехнических работ.
- 5. Проблемы механизации для комбинированных машин и орудий.
- 6. Проблемы механизации внесения удобрений.
- 7. Проблемы механизации посева зерновых культур.
- 8. Проблемы механизации посева мелкосеменных культур.
- 9. Проблемы механизации междурядной обработка растений.
- 10. Проблемы механизации химической обработка растений.
- 11. Проблемы механизации уборки урожая зерновых колосовых культур.
- 12. Проблемы механизации уборки урожая кукурузы.
- 13. Проблемы механизации послеуборочной обработки урожая.
- 14. Тенденции развития машин для посадки рассады.
- 15. Тенденции развития зарубежных машин для посадки картофеля.
- 16. Тенденции развития зерноуборочных машин.
- 17. Проблемы механизации машин для внесения удобрений.
- 18. Проблемы механизации для опрыскивателей.
- 19. Проблемы механизации для машин для полива.
- 20. Проблемы механизации машин для уборки кормовых культур
- 21. Проблемы механизации машин для уборки незерновой части урожая
- 22. Проблемы механизации машин для зерноочистительных и сортировальных машин.
- 23. Проблемы механизации машин для уборки кукурузы.

- 24. Проблемы механизации машин для уборки сахарной свеклы.
- 25. Проблемы механизации машин для уборки плодово-ягодных культур.
- 26. Проблемы механизации машин для уборки овощей.
- 27. Проблемы механизации сушильных агрегатов.
- 28. Влияние технических характеристик сельскохозяйственных машин на производительность технологических процессов.
- 29. Нетрадиционные способы получения электроэнергии.
- 30. Тенденции мировой практики получения электроэнергии.

7.3.1.2 Для промежуточного контроля

Вопросы и задания для проведения промежуточного контроля (экзамена)

Компетенция: способен разрабатывать физические и математические модели, проводить теоретические и экспериментальные исследования процессов, явлений и объектов, относящихся к механизации, сельскохозяйственного производства (ПК-3)

Плуги.

- 1. Физико-механические свойства почвы и агротехнические требования к ее обработке.
- 2.Технологический процесс вспашки почвы, профиль борозды и условия оборачиваемости пласта почвы.
 - 3. Рабочая поверхность корпуса плуга как развитие трехгранного клина.
- 4.Типы лемешно-отвальных поверхностей плуга и способы их построения.
- 5.Особенности устройства и работы навесного, полу навесного и прицепного плугов.
- 6. Расчет навесного плуга. Определение усилия в штоке гидроцилиндранавесной системы.
- 7. Расчет навесного плуга. Определение усилия на ободе опорного колеса.
 - 8. Формула академика В.П. Горячкина и ее анализ.
 - 9. КПД плуга. Расчет тягового сопротивления плуга по В.П. Горячкину Культиваторы.
 - 10. Типы рабочих органов культиваторов. Особенности их работы.
- 11.Основные параметры рабочих органов культиваторов и элементы их расчета.
 - 12...Размещение рабочих органов культиватора на раме.
 - 13. Способы крепления рабочих органов культиваторов к раме.

Зубовые бороны.

- 14.Классификация зубовых борон, их устройство и регулировки.
- 15.Способы крепления зубьев на раме бороны и требования к их расстановке.
 - 16. Устойчивый ход зубовой бороны, основные требования.

- 17. Построение зубового поля бороны.
- 18. Тяговое сопротивление зубовой бороны.

Дисковые орудия.

- 19.Классификация дисковых почвообрабатывающих орудий. Особенности их работы и устройство.
 - 20.Основные параметры дисковых рабочих органов.
 - 21. Расстановка дисков борон и лущильников. Угол атаки.
 - 22.Силы, действующий на дисковые рабочие органы. Фрезы.
 - 23. Кинематика рабочих органов фрез. Уравнение движения.
 - 24. Основные параметры технологического процесса работы фрезы.
 - 25. Затраты мощности на работу фрезы.

Сеялки.

- 26.Способы посева и посадки и предъявляемые требования.
- 27.Основные параметры катушечного высевающего аппарата. Рабочая длина катушки.
 - 28. Дисковые высевающие аппараты.
 - 29.Пневматические высевающие аппараты.

Кинематический режим работы посадочного аппарата.

- 30. Аппараты для высадки клубней картофеля. Технологический процесс работы вычерпывающего аппарата, расчет его основных параметров.
 - 31. Рабочий процесс сошников.
- 32.Взаимодействие сошников с почвой. Сошники с острым и тупым углами вхождения в почву.
 - 33. Равновесие анкерных и дисковых сошников.
 - 34 . Установка зерновой сеялки на заданную норму высева семян.
- 35. Расчет вылета маркеров сеялки для различных способов вхождения по следу маркера.

Машины для внесения удобрений.

- 36. В иды удобрений и способы их внесения.
- 37. Типы аппаратов для внесения удобрений. Особенности устройства и работы.
- 38. Устройство, работа и регулировки туковой сеялки. Расчет тарельчатого туковысевающего аппарата.
 - 39. Рабочий процесс центробежно-дисковых аппаратов.
- 40. Рабочий процесс барабанных аппаратов для внесения твердых органических удобрений. Расчет скорости движения транспортера и минимальной частоты вращения барабана.
 - 41. Принцип действия машин для разбрасывания жидких удобрений.

Машины для защиты растений от вредителей и болезней

- 42. Методы и способы защиты растений и агротребования
- 43. Расход жидкого ядохимиката при работе опрыскивтаеля
- 44. Критерий качества опрыскивания и их определение
- 45. Расчет расхода ядохимиката опыливателем и степень опыляемости растений

Основы исследований в механизации растениеводства

- 46.Обоснование темы исследований. Формулировка цели и постановка задач исследований.
 - 47.0бъект и предмет исследований. Гипотеза.
 - 48. Понятие теории. Ее компоненты. Теоретический анализ гипотез.
 - 49. Методология, метод и методика.
- 50.Понятие «система» и системный подход в научном исследовании. Сельскохозяйственное производство как система. Дать схему.
 - 51.Понятие «наблюдение», «исследование» и «испытание».
 - 52.Ошибка наблюдений. Систематические, грубые, случайные.
- 53.Измерения и их классификация. Приборы и инструменты для измерений различных величин.
- 54.Ошибки средств измерения. Понятие абсолютной, относительной или приведенной ошибки. Предельная относительная ошибка.
 - 55. Статистические характеристики эмпирического распределения
- 56.Коэффициент вариации, ошибка выборочной средней, относительная ошибка выборочной средней. Предельная возможная статистическая ошибка.
- 57.Закон нормального распределения. Характеризующие его закономерности. Проиллюстрировать графически.
 - 58.Стандартное распределение. Функция Лапласа.
 - 59. Генеральная совокупность и выборка.
 - 60. Критерий t распределения Стьюдента.
 - 61. Критерий F распределения Фишера.
 - 62. Критерий х распределения.
 - 63. Наименьшая существенная разность (НСР).

Механизация уборки сельскохозяйственных культур

- 64. Условия скольжения при срезании растений. Коэффициент скольжения и работа резания.
- 65.Скорости резания стеблей сегментно-пальцевым режущим аппаратом, их определение для аппаратов нормального и низкого резания.
- 66. График пробега активного лезвия сегмента при срезании растений с поля.
- 67. Траектория движения планки мотовил в зависимости от кинематического показателя.
 - 68. Показатели кинематического режима работы мотовила.
- 69. Степень воздействия планки мотовила. Установка вала мотовила по высоте и его вынос.
- 70. Классификация молотильных устройств и их рабочий процесс. Фазы обмолота.
 - 71. Основное уравнение работы молотильного барабана и его анализ.
- 72. Анализ работы молотильного устройства исходя из сочетания работоспособности двигателя, барабана и подаваемой хлебной массы. Приход и расход энергии барабана.
 - 73. Выбор скорости движения зерноуборочного комбайна.

- 74. Уравнение движения клавишного соломотряса и его анализ.
- 75. Основные параметры клавишного соломотряса и их обоснование.
- 76. Очистка зерноуборочного комбайна. Конструкция, рабочий процесс и регулировки.
 - 77. Кинематика плоского решета. Перемещение, скорость и ускорение.
 - 78. Графики скоростей и ускорений решета грохота комбайна.
- 79. Условие отрыва вороха от грохота комбайна. Определение скорости грохота для различных режимов работы.
- 46. Способы очистки и сортирования зерна. Разделение зерна по аэродинамическим свойствам. Коэффициент парусности и его физический смысл.
- 80. Разделение зерновых смесей по состоянию поверхности зерна и форме.
- 81. Технологический процесс кукурузоуборочных машин. Условия захвата стебля вальцами и обоснование их диаметра.

Задания (практические задания, тесты для проведения зачета, зачета с оценкой, экзамена)

- 1. Имеем два плужных корпуса с цилиндроидальными рабочими поверхностями. Значения углов установки лезвия лемеха к стенке борозды у первого плужного корпуса: $\gamma_0 = 42^\circ$, $\gamma_{\text{max}} = 48^\circ$; у второго $\gamma_0 = 38^\circ$, $\gamma_{\text{max}} = 50^\circ$. К какому типу относятся первая и вторая рабочие поверхности плужных корпусов?
- 2. Определить расстояние между смежными дисками тракторной двуследной бороны при установке дисков под углом ($\beta = 20^{\circ}$ к линии тяги и получения в первом следе гребней высотой не больше c = 15 см, диаметр дисков D = 510 мм.
- 3. Определить минимальное расстояние между рядами рыхлительных лап культиватора, если глубина обработки 8 см, вылет носка лапы 10 см, угол вхождения лапы в почву 30° и угол трения почвы о сталь 35°.
- 4. Вычислить коэффициент сепарации μ для комбайна «Нива» при нагрузке молотильного аппарата 5 кг/с, если известно, что при толщине слоя 0.15 м ц = 1.1 м⁻¹.
- 5. Определить подачу пылеобразного ядохимиката опыливателем, движущимся со скоростью 8 км/ч, если ширина распространения пылевой волны 60 м и норма расхода ядохимиката 15 кг/га.
- 6. Определить коэффициент скольжения колес сеялки, если запройденный ею путь l=42 м опорное колесо диаметром D=1,25 м сделало 10 полных оборотов.
- 7. Определить радиус мотовила и диапазон регулирования мотовила по высоте при следующих условиях: максимальная высота стеблей 2,2 м,

- высота установки режущего аппарата 0,2 м, скорость машины 1,2 м/с, окружная скорость планки мотовила 2,2 м/с, зазор между планкой и режущим аппаратом при нижнем положении 70 мм.
- 8. Определить площадь участка, с которого стебли будут срезаны сегментом за один ход ножа, и установить тип режущего аппарата, если известно, что машина перемещается со скоростью 5,4 км/ч, частота вращения кривошипного вала 450 мин⁻¹, ход ножа, шаг сегмента и шаг пальцев 76,2 мм.
- Определить максимальную допустимую подачу хлебной массы в молотилку комбайна СК-5 «НИВА», если отношение массы зерна к массе соломы отличается от стандартной (1:β = 1:1,5) и составляет 1 :β_{cp} = 1:1.
- 10.Определить подачу режущего аппарата косилки, движущейся со скоростью 1,6 м/с, если угловая скорость кривошипного вала привода ножа 88 c^{-1} .
- 11.. Определить, под каким углом а к горизонту следует установить черенковый нож плуга для того, чтобы обеспечить скольжение в процессе резания корневищ с углом трения $fK = 18^{\circ}$ в почве с углом трения $fH = 22^{\circ}$.
- 12. Определить тяговое усилие, требующееся для перемещения по пашне 28-рядной двухдисковой сеялки в транспортном положении; сеялка заправлена семенами. Диаметр ходового колеса Dxк =120 см, ширина ободьев b = 12 см. Пашня характеризуется показателем смятия почвы под колесами a = 3,5, масса сеялки 1750 кг.
- 13.Необходимо обработать поле дисковым лущильником на глубину a=10 см. При угле атаки $\theta=30^\circ$ обеспечивается качество обработки (высота гребней $h\leq 0,5$ а). Расстояние между дисками в батареях b=170 мм. Найдите рабочий диаметр дисков.
- 14.Определить показатель кинематического режима работы фрезы из условия получения гребешков на дне борозды высотой 2 см. Диаметр фрезерного барабана 350 мм, число ножей 4, коэффициент, учитывающий скольжение почвенной стружки, 0,5.
- 15.Определить горизонтальную силу тяги гладкого катка, имеющего диаметр 0,7 м, ширину 1,4 м, массу 260 кг, используемого для прикатывания свежевспаханной почвы.
- 16.Определить максимальную скорость ножа однопробежного режущего аппарата нормального типа, если частота вращения кривошипного вала 600 мин⁻¹, а шаг противорежущей части 76 мм.

- 17. Определить расход раствора ядохимикатов одним наконечником в одну минуту, если опрыскиватель работает с шириной захвата 4 м, со скоростью 6 км/ч. Норма расхода раствора 3 л/га. Число наконечников 20.
- 18.Определить скорость транспортера тукоразбрасывателя, если известно, что скорость агрегата $v=1,5\,$ м/с, норма внесения удобрения $Q=500\,$ кг/га, высота щели $H=0,4\,$ м, объемная масса туков $\gamma=800\,$ кг/м³, $B_{\rm Tp}=B_{\rm p}.$
- 19. Составить таблицу промежуточных значений угла γ для образующих поверхности полувинтового отвала при следующих данных: $\gamma_0 = 35^\circ$, $\gamma_{\min} = 33^\circ$ для $z_1 = 7.5$ см; $\gamma_n = 45^\circ$ для $z_{\max} = 32.5$ см. Построить график $\gamma = f(z)$ Указание: для высот до z_1 интервалы взять по 2,5 см, а для высот больше z_1 интервалы по 5 см.
- 20. Определить ширину захвата, построить зубовое поле бороны типа зиг-заг при следующих условиях: число планок M=5, число ходов винта K=3, междурядье a=20 мм, длина бороны L=600 мм , число продольных зигзагообразных планок N=5.
- 21.Определить максимальное заглубление рыхлительных лап культиватора при следующих исходных данных: расстояние между стойками лап 350 мм; ширина стойки 50 мм; угол деформации 50°; угол трения 25°; угол подъема 35°.
- 22. Определить максимальное расстояние между рабочими органами дискового лущильника, если известно, что диаметр дисков D = 510 мм, угол атаки $\beta = 30^{\circ}$, глубина лущения почвы a = 6 см.
- 23. Вычислить диаметр фрезы прореживателя, если ширина обрабатываемой зоны 18 см, а угол наклона оси фрезы к направлению движения $\alpha = 40^{\circ}$, коэффициент объемного смятия $q = 3 \text{ H/cm}^3$.
- 24.Поле, которое должен обрабатывать гладкий цилиндрический каток диаметром 700 мм, характеризуется углом трения почвы о каток 18° и углом трения почвы о почву 22°. Определить, будет ли происходить сгруживание комков перед катком, если максимальный размер комков составляет 80 мм.
- 25. Вычислить длину рабочей части катушки высевающего аппарата при норме высева Q=220 кг/га и передаточном отношении от приводного колеса к валу высевающего аппарата i=0,54. Известно, что диаметр приводного колеса D=1,2 м, ширина междурядьев a=0,15 м, наружный диаметр катушки $d_{\kappa}=5$ см, площадь поперечного сечения желобка $f_{\infty}=0,5$ см², число желобков z=12, толщина условного активного

слоя $C_v = 0.25$ см, плотность семян $\rho = 0.72$ г/см³.

- 26. Определить предельную угловую скорость вращения тарелки тукового высевающего аппарата, если известны скорость истечения туков $v_{\text{ист}} = 1 \text{ м/c}$, наибольший диаметр тарелки $D_{\text{max}} = 232 \text{ мм}$, наименьший диаметр тарелки $D_{\text{min}} = 48 \text{ мм}$. Как практически можно определить скорость истечения туков через щель?
- 27. Подборщик валков движется с поступательной скоростью 3 км/ч. Определить окружную скорость конца пальца подборщика, находящегося в верхнем положении, при которой обеспечивается качественный подбор валков.
- 28. Определить скорость ножа в начале и конце резания для однопробежного режущего аппарата нормального типа, если известно: частота вращения кривошипного вала 640 мин⁻¹, шаг сегментов и пальцев равен 76 мм, ширина переднего основания сегмента 16 мм и пальцевой пластины 22 мм, ширина заднего основания сегмента 76 мм и пластины 24 мм. Угол поворота кривошипа до начала резания равен 20° и до конца резания 160°.
- 29. Две полевые доски имеют одинаковую площадь контакта со стенкой борозды $h_1l_1=h_2l_2$, однако, высота первой больше, чем второй $(h_1>h_2)$, а длина второй больше, чем первой $(l_1< l_2)$. Какая из них принадлежит плужному корпусу для обработки торфяно-болотных почв и какая плужному корпусу для обработки старопахотных почв?
- 30.Вычислить расстояние между корпусами по направлению перемещения плуга, если угол наклона образующей к стенке борозды 42°, угол трения 26,5°, ширина захвата корпуса 350 мм.

Темы курсовых работ (проектов)

В соответствии с учебным планом обучающиеся выполняют курсовую проект. По итогам выполнения курсового проекта оцениваются компетенции:

ПК-3 Способен разрабатывать физические и математические модели, проводить теоретические и экспериментальные исследования процессов, явлений и объектов, относящихся к механизации, сельскохозяйственного производства

Проектирование и технологический расчет сеялки.

Варианты заданий для выполнения курсового проекта

	Dapmanni	л эадантн	т дли выпс		ypeoboro iipoei	. Tu	
Вари-	Сеялка,	Ширина	Удельная	Передача	Транспортный	Угол	Удельное
ант	марка	захвата,	масса се-	трактора		сопротивления	сопротивле-
		В, м	ялки,		MM	перекатывани	ние k , кН/м ²
			q , кг/м			$_{ m HO}, lpha^{ m 0}$	
1	2	3	4	5	6	7	8
1	C3	3	380	4	145	30	21

2	СЗУ	4	420	5	150	31	23
3	ΑУΠ	5	680	6	155	29	25
4	C3	6	390	7	150	30	20
5	ΑУΠ	7	710	6	145	31	23
6	С3	6	395	5	145	32	25
7	ΑУΠ	7	700	7	140	31	24
8	СЗУ	6	415	6	150	30	23
9	C3	5	400	5	155	29	22
10	СЗУ	4	401	5	150	30	21
11	ΑУΠ	5	690	7	145	31	22
12	C3	4	380	6	140	32	23
13	СЗУ	5	415	5	145	31	24
14	C3	6	385	4	150	30	25
15	ΑУΠ	7	685	5	155	29	24
16	C3	5	370	6	160	30	23
17	СЗУ	7	415	6	155	31	22
18	C3	6	390	7	150	32	21
19	ΑУΠ	5	675	6	145	31	22
20	СЗУ	4	410	7	140	30	23
21	ΑУΠ	6	690	6	145	29	24
22	ΑУΠ	4	670	5	150	30	25
23	СЗУ	5	415	6	155	31	24
24	ΑУΠ	6	675	4	160	32	23
25	C3	7	395	5	155	31	22
26	ΑУΠ	4	680	6	150	30	21
27	СЗУ	7	425	7	145	29	22
28	C3	6	400	6	140	30	23
29	СЗУ	5	410	6	145	31	24
30	C3	5	380	5	150	32	25
31	СЗУ	3	425	7	155	31	24
32	СЗУ	4	420	6	160	32	23
33	ΑУΠ	5	685	6	160	31	22
34	ΑУΠ	6	690	7	155	30	21
35	ΑУΠ	7	700	7	150	31	22
36	СЗУ	3	420	6	145	30	23
37	C3	7	370	7	140	29	24
38	СЗУ	6	410	6	145	30	25
39	ΑУΠ	5	685	5	150	31	24
40	СЗУ	4	418	6	155	32	23
41	СЗ	3	375	7	160	32	22
42	СЗУ	4	420	6	155	31	21
43	СЗ	5	380	7	150	30	22

44	ΑУΠ	6	680	5	145	29	23
45	ΑУΠ	7	685	5	140	30	24

Содержание этапа	Формулируемые ком-
	петенции
1. Вводная часть. Введение, обоснование актуальности темы, ее практическая значимость	ПК-3
2. Аналитическая часть. Выполняется обзортехнологий посева зерновых культур для разных условий хозяйств анализируя различные источников информации. Анализируются агротехнические требования к технологическому процессу, машине или рабочему органу	ПК-3
3. Проектная часть. Приводится описание конструкции проектируемой сеялки. Определяются исходные требования.	ПК-3
4. Теоретическая часть. Выполняется технологический расчет узлов, рабочих органов и элементов конструкции проектируемой сеялки.	ПК-3
5. Заключительная часть. Формирование выводов по выполненной работе. Постановка задач для дальнейших исследований	ПК-3
6. Графическая часть	ПК-3

7.4. Методические материалы, определяющие процедуры оценивания знаний, умений и навыков и опыта деятельности, характеризующих этапы формирования компетенций

Требования к реферату и ее оценка

Критериями оценки реферата являются: новизна текста, обоснованность выбора источников литературы, степень раскрытия сущности вопроса, соблюдения требований к оформлению.

Оценка «отлично» — выполнены все требования к написанию реферата: обозначена проблема и обоснована её актуальность; сделан анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция; сформулированы выводы, тема раскрыта полностью, выдержан объём; соблюдены требования к внешнему оформлению.

Оценка «хорошо» — основные требования к реферату выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала; отсутствует логическая последовательность в суждениях; не выдержан объём реферата; имеются упущения в оформлении.

Оценка «удовлетворительно» — имеются существенные отступления от требований к реферированию. В частности: тема освещена лишь частично; допущены фактические ошибки в содержании реферата; отсутствуют выводы.

Оценка «неудовлетворительно» — тема реферата не раскрыта, обнаруживается существенное непонимание проблемы или реферат не представлен вовсе.

Критерии оценки знаний при проведении тестирования

Оценка «отлично» выставляется при условии правильного ответа студента не менее чем на 85 % тестовых заданий.

Оценка «хорошо» выставляется при условии правильного ответа студента не менее чем на 70~% тестовых заданий.

Оценка «удовлетворительно» выставляется при условии правильного ответа студента не менее чем на 51 %.

Оценка «неудовлетворительно» выставляется при условии правильного ответа студента менее чем на 50 % тестовых заданий.

Результаты текущего контроля используются при проведении промежуточной аттестации.

Критерии, показатели и шкала оценивания курсового проекта

П.п. Критерии		Показатели		Уровень	выпол
11.11.	түнтерии	TIONGSGIOJIN	Неудовлетворительно	Удовлетворительно	<u> </u>
		Соответствие требуемой структуре задания	Полное несоответствие требуемой структуре	Частичное несоответствие требуемой структуре	Не струг
	1 Содержание	Соответствие представленного материала целям и задачам	Представленный материал полностью не соответствует целям и задачам	Частичное несоответствие представленного материала целям и задачам	Не з отвез ленн
1		Полнота раскрытия и достижения поставленных целей и задач	Представленный материал не раскрывает и не способствует достижению поставленной цели и задач	Представленный материал не в полном объеме раскрывает этапы достижения поставленной цели и задач	Объе го м но д ставл
		Актуальность использованных источников информации	Использованные источники информации не актуальны	Использованные источники информации не полностью актуальным современным тенденциям развития сельхозмашиностроения	Испоники альн совреми риние
2	Организация	Применение современных технологий поиска и обработки информации	Представленный материал получен без использования современных технологий поиска и обработки информации	Представленный материал в большей степени получен с использованием современных технологий поиска и обработки информации	Пред риал зован техно обра
3	Саморазвитие	Самостоятельность выполнения задания	Обучающийся не способен самостоятельно выполнить ни одного этапа по представленному за-	Обучающийся нуждается в частых консультациях по всем этапам выполнения представленного задания	Обуч ся конс дому пред

			данию		ния
	Оформление		Представленный ма-	Представленный мате-	Пред
4 полученных	Соответствие тре-	териал в полном объ-	риал в значительной	риал	
		Гоованиям ЕСК / Г	еме не соответствует	части соответствует	телы
	результатов		требованиям ЕСКД	требованиям ЕСКД	треб

При необходимости определения уровня сформированности (У) по критериям среднее значение вычисляется до десятых долей, перевести в проценты и определить уровень, используя приведенную таблицу.

Шкала оценки уровня сформированности компетенций

Уровень	Значение показателя, %
пороговый	$50 \le Y < 75$
продвинутый	$75 \le y < 90$
высокий (превосходный)	$90 \le y \le 100$

Согласно положению системы менеджмента качества КубГАУ 2.5.1 «Текущий контроль успеваемости и промежуточная аттестация обучающихся» установлен следующий порядок выставления оценок.

Критерии оценки на экзамене

Оценка **«отлично»** выставляется обучающемуся, который обладает всесторонними, систематизированными и глубокими знаниями материала учебной программы, умеет свободно выполнять задания, предусмотренные учебной программой, усвоил основную и ознакомился с дополнительной литературой, рекомендованной учебной программой. Как правило, оценка «отлично» выставляется обучающемуся усвоившему взаимосвязь основных положений и понятий дисциплины в их значении для приобретаемой специальности, проявившему творческие способности в понимании, изложении и использовании учебного материала, правильно обосновывающему принятые решения, владеющему разносторонними навыками и приемами выполнения практических работ.

Оценка **«хорошо»** выставляется обучающемуся, обнаружившему полное знание материала учебной программы, успешно выполняющему предусмотренные учебной программой задания, усвоившему материал основной литературы, рекомендованной учебной программой. Как правило, оценка «хорошо» выставляется обучающемуся, показавшему систематизированный характер знаний по дисциплине, способному к самостоятельному пополнению знаний в ходе дальнейшей учебной и профессиональной деятельности, правильно применяющему теоретические положения при решении практических вопросов и задач, владеющему необходимыми навыками и приемами выполнения практических работ.

Оценка **«удовлетворительно»** выставляется обучающемуся, который показал знание основного материала учебной программы в объеме, достаточном и необходимым для дальнейшей учебы и предстоящей работы по специ-

альности, справился с выполнением заданий, предусмотренных учеб-ной программой, знаком с основной литературой, рекомендованной учебной программой. Как правило, оценка «удовлетворительно» выставляется обучающемуся, допустившему погрешности в ответах на экзамене или выполнении экзаменационных заданий, но обладающему необходимыми знаниями под руководством преподавателя для устранения этих погрешностей, нарушающему последовательность в изложении учебного материала и испытывающему затруднения при выполнении практических работ.

Оценка **«неудовлетворительно»** выставляется обучающемуся, не знающему основной части материала учебной программы, допускающему принципиальные ошибки в выполнении предусмотренных учебной программой заданий, неуверенно с большими затруднениями выполняющему практические работы. Как правило, оценка «неудовлетворительно» выставляется обучающемуся, который не может продолжить обучение или приступить к деятельности по специальности по окончании университета без дополнительных занятий по соответствующей дисциплине.

8 Перечень основной и дополнительной учебной литературы

Основная учебная литература:

- 1. Трубилин Е. И. Основы теории уборочных процессов и машин в АПК: учеб. пособие / Е. И. Трубилин, Е. И. Виневский, С. К. Папуша, В. И. Коновалов. Краснодар: КубГАУ, 2019. 156 с. Режим доступа: https://edu.kubsau.ru/file.php/115/UP_po_teorii_uborochnykh_mashin_462681_v1_.PDF
- 2. Максимов, И.И. Практикум по сельскохозяйственным машинам [Электронный ресурс] : учебное пособие / И.И. Максимов. Электрон. дан. Санкт-Петербург : Лань, 2015. 416 с. Режим доступа: https://e.lanbook.com/book/60046 . ЭБС «Лань».
- 3. Трубилин Е.И. Машины для уборки сельскохозяйственных, культур (конструкции, теория и расчет) [Текст]: Учеб.пос. 2 изд перераб. и дополн. / Е.Н. Трубилин, В.А. Абликов, Л.П. Соломатина, А.Н. Лютый. КГАУ, Краснодар,2009 216 с. Режим доступа: https://edu.kubsau.ru/file.php/115/Selskokhozjaistvennye_mashiny_Trubilin.pdf

Дополнительная учебная литература:

1. Основы теории уборочных процессов и машин в АПК: учеб. пособие / Е.И. Трубилин, Е.И. Виневский, С.К. Папуша, В.И. Коновалов. Краснодар: КубГАУ, 2019. –156с.

https://edu.kubsau.ru/file.php/115/UP_po_teorii_uborochnykh_mashin_4626_81_v1_.PDF

2. Руденко Н.Б. Технологические и силовые характеристики почвообрабатывающих рабочих органов [Электронный ресурс]: учебное пособие/

- Руденко Н.Б.— Электрон. текстовые данные.— Ставрополь: Ставропольский государственный аграрный университет, АГРУС, 2014.— 92 с.— Режим доступа: http://www.iprbookshop.ru/47364. ЭБС «IPRbooks».
- 3. Современные проблемы науки и производства в агроинженерии : учебник / В. Ф. Федоренко, В. И. Горшенин, К. А. Монаенков [и др.] ; под редакцией А. И. Завражнова. Санкт-Петербург : Лань, 2013. 496 с. ISBN 978-5-8114-1356-0. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/5841

9 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень ЭБС

	r	
№	Наименование	Тематика
1	Znanium.com	Универсальная
2	IPRbook	Универсальная
3	Образовательный	Универсальная
	портал КубГАУ	

Перечень Интернет сайтов:

- 1. Научная электронная библиотека [Электронный ресурс]. URL: http://www.eLIBRARY.RU.
- 2. Электронный каталог центральной научной сельскохозяйственной библиотеки (ГНУ ЦНСКБ Россельхозакадемии [Электронный ресурс]. URL: http://www.cnshb.ru.
- 3. Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности» [Электронный ресурс]. URL: http://www1.fips.ru
- 4. Государственная публичная научно-техническая библиотека Росси [Электронный ресурс]. URL: http://www.gpntb.ru/.
- 5. Научная электронная библиотека диссертаций и авторефератов [Электронный ресурс]. URL: http://www.dissercat.com/
- 6. Патентный поиск, поиск патентов на изобретения, национальный реестр интеллектуальной собственности [Электронный ресурс]. URL: http://www.findpatent.ru/

10 Методические указания для обучающихся по освоению дисциплины

1. Устройство, технологический процесс и регулировки плугов для гладкой вспашки: метод. Указания / сост. Е.И. Трубилин, В. И. Коновалов. – Краснодар: КубГАУ, 2017. – 40 с. Режим доступа:

https://edu.kubsau.ru/file.php/115/Plugi_dlja_gladkoi_vspashki.pdf

3. Построение конструктивной схемы навесного плуга и определение сил, действующих на плуг и механизм навески: метод. Указания / сост. Е. И. Трубилин, С. К. Папуша, В. И. Коновалов. – Краснодар: КубГАУ, 2017 – 35 с. Режим доступа:

https://edu.kubsau.ru/file.php/115/Postroenie_skhemy_navesnogo_pluga_25_.04.pdf

11 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

11.1 Перечень лицензионного ПО

№	Наименование	Краткое описание	
1	Microsoft Windows	Операционная система	
2	Microsoft Office (включает Word, Ex-	Текстовый редактор	
	cel, PowerPoint)		
3	Система тестирования INDIGO		
4	Компас V12,	САПР	

11.2 Доступ к сети Интернет, доступ в электронную информационно-образовательную среду университета.

12 Материально-техническое обеспечение для обучения по дисциплине

No	Наименование учебных пред-	Наименование помещений для	Адрес (местоположение) помещений
Π/Π	метов, курсов, дисциплин	проведения всех видов учебной	для проведения всех видов учебной
	(модулей), практики, иных	деятельности, предусмотренной	деятельности, предусмотренной
	видов учебной деятельности,	учебным планом, в том числе по-	учебным планом (в случае реализа-
	предусмотренных учебным	мещения для самостоятельной ра-	ции образовательной программы в
	планом образовательной про-	боты, с указанием перечня основ-	сетевой форме дополнительно ука-
	граммы	ного оборудования, учебно-	зывается наименование организации,
		наглядных пособий	с которой заключен договор)
		и используемого программного	
		обеспечения	
1	2	3	4
1	Теоретические основы в	Помещение №223 MX, поса-	350044, Краснодарский край,
	агроинженерии	дочных мест – 46; площадь –	г. Краснодар, ул. им. Калини-
		60,6м²; учебная аудитория	на, 13, здание учебного корпу-
		для проведения занятий лек-	са факультета механизации
		ционного типа, занятий се-	
		минарского типа, курсового	
		проектирования (выполнения	

		1	
		курсовых работ), групповых	
		и индивидуальных консуль-	
		таций, текущего контроля и	
		промежуточной аттестации.	
		специализированная мебель	
		(учебная доска, учебная ме-	
		бель); технические средства	
		обучения, наборы демонст-	
		рационного оборудования и	
		учебно-наглядных пособий	
		(ноутбук, проектор, экран);	
		программное обеспечение:	
		Windows, Office.	
2	Теоретические основы в	Помещение №357 MX, поса-	350044, Краснодарский край,
	агроинженерии	дочных мест – 20; площадь –	г. Краснодар, ул. им. Калини-
		41,7м ² ; помещение для само-	на, 13, здание учебного корпу-
		стоятельной работы обу-	са факультета механизации
		чающихся технические сред-	
		ства обучения	
		(компьютеры персональные);	
		доступ к сети «Интернет»;	
		доступ в электронную ин-	
		формационно-	
		образовательную среду уни-	
		верситета; специализирован-	
		ная мебель (учебная мебель).	