Аннотация рабочей программы дисциплины «ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»

(Адаптированная рабочая программа для лиц с ограниченными возможностями здоровья и инвалидов, обучающихся по адаптированным основным профессиональным образовательным программам высшего образования)

1. Целью дисциплины «Технология конструкционных материалов» является познание строения и свойств материалов, способов улучшения их свойств для наиболее эффективного использования в технике, умение выбирать материалы в соответствии с их назначением, изучение методов получения изделий из металлов, их сплавов и неметаллических материалов.

2. Задачи дисциплины:

– сформировать навыки выбора рационального способа получения заготовок, исходя из заданных эксплуатационных свойств, а также овладеть методикой выбора конструкционных материалов для изготовления элементов машин, механизмов и строительных конструкций

3. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	о содыминие днецииний
1	Введение. Задачи и значение дисциплины «Материаловеде-ние». Краткие сведения
	об истории развития науки о материалах. Роль металлов в современной технике.
	Структурные методы исследования металлов.
2	Понятие о кристаллической решетке, анизотропия.
	Прочность идеальных и реальных металлов. Микро-, макроанализ.
3	Формирование структуры при кристаллизации. Понятие о кристаллической решет-
	ке. Точечные, линейные дефекты. Атомно-кристаллическая структура металлов.
4	Механические свойства и конструктивная прочность. Строе-ние реальных метал-
	лов. Виды дефектов, их классификация, влияния на свойства. Точечные дефекты.
	Виды точечных де-фектов. Линейные дефекты. Основные типы дислокаций.
5	Диаграммы фазового равновесия и теория сплавов. Понятия: компонент, фаза,
	структурная составляющая.
6	Железо и его сплавы. Углеродистые стали. Диаграмма Fe-Fe3C. Чугуны белые, се-
	рые, ковкие высокопрочные. Компо-ненты и фазы в сплавах «Железо-углерод».
	Метастабильная диаграмма состояния «Железо-цементит». Структурные со-
	ставляющие на диаграмме «Железо-цементит», их характеристики, условия образо-
	вания и свойства.
7	Теория термической обработки стали. Технология термиче-ской обработки стали.
	Легированные стали. Цветные металлы.
8	Производство неразъемных соединений
	Сварочное производство, Физико-химические основы полу-чения сварного соеди-
	нения.
	Свариваемость металлов и сплавов.
	Напряжение и деформация при сварке.
9	Электродуговая сварка. Способы сварки. Электрическая контактная сварка: точеч-
	ная, шовная, стыковая и рельефная. Напряжение и деформации при сварке.
	Газовая сварка и резка. Оборудование газовой сварки. Физико-химические основы
	газовой сварки и резки.

ОБЪЕМ ДИСЦИПЛИНЫ — 2 зачетные единицы. **ФОРМА ПРОМЕЖУТОЧНОГО КОНТРОЛЯ** — зачет