МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный аграрный университет имени И.Т. Трубилина»

ФАКУЛЬТЕТ МЕХАНИЗАЦИИ

УТВЕРЖДАЮ

Декан факультета механизания МЕХАНИЗАЦИИ

19 мая

доцент А. А. Титученко

Рабочая программа дисциплины

Гидравлика

(Адаптированная рабочая программа для лиц с ограниченными возможностями здоровья и инвалидов, обучающихся по адаптированным основным профессиональным образовательным программам высшего образования)

Специальность 23.05.01 Наземные транспортно-технологические средства

Специализация № 3 Технические средства агропромышленного комплекса (программа специалитета)

> Уровень высшего образования Специалитет

> > Форма обучения Очная

> > > Краснодар 2022

Рабочая программа дисциплины Б1.О.37 «Гидравлика» разработана на основе ФГОС ВО 23.05.01 «Наземные транспортно-технологические средства» утвержденного приказом Министерства образования и науки РФ 11 августа 2020 г. № 935.

Автор:

канд. техн. наук, доцент

JAN .

В. Г. Дегтярев

Рабочая программа обсуждена и рекомендована к утверждению решением кафедры гидравлики и сельскохозяйственного водоснабжения от 18.04.2022г., протокол № 8

Заведующий кафедрой д-р. техн. наук, профессор

exys)

Е. В. Кузнецов

Рабочая программа одобрена на заседании методической комиссии факультета механизации, протокол от 18.05.2022 г. № 9.

Председатель методической комиссии д.т.н., профессор

О. Н. Соколенко

Руководитель основной профессиональной образовательной программы, профессор

В. С. Курасов

1 Цель и задачи освоения дисциплины

Целью освоения дисциплины «Гидравлика» является формирование комплекса знаний об законах равновесия и движения жидкостей и о способах применения этих законов при решении практических задач в области механизации сельского хозяйства.

Задачи дисциплины

- изучение основных законов гидростатики и гидродинамики жидкостей;
- овладение основными методами расчета гидравлических параметров потока и сооружений;
- получение навыков решения прикладных задач в области строительства.

2 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

В результате освоения дисциплины формируются следующие компетенции:

ОПК-1 — способен ставить и решать инженерные и научнотехнические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей.

3 Место дисциплины в структуре ОПОП ВО

«Гидравлика» является дисциплиной обязательной части (части, формируемой участниками образовательных отношений) ОПОП ВО подготовки обучающихся по специальности 23.05.01 «Наземные транспортнотехнологические средства», специализация «Технические средства агропромышленного комплекса».

4 Объем дисциплины (108 часов, 3,0 зачетных единицы)

Puru vyohuov pohomu	Объем, часов
Виды учебной работы	Очная
Контактная работа	57
в том числе:	
— аудиторная по видам учебных занятий	54
— лекции	18
— практические	18

Drawy range way makamy	Объем, часов
Виды учебной работы	Очная
- лабораторные	18
— внеаудиторная	-
— зачет	-
— экзамен	3
— защита курсовых работ (проектов)	-
Самостоятельная работа в том числе:	51
— курсовая работа (проект)	-
 прочие виды самостоятельной работы 	-
Итого по дисциплине	-

5 Содержание дисциплины

По итогам изучаемой дисциплины студенты (обучающиеся) сдают экзамен (зачет, зачет с оценкой), выполняют курсовую работу (проект).

Дисциплина изучается на 2 курсе, в 4 семестре по учебному плану очной формы обучения.

Содержание и структура дисциплины по очной форме обучения

№ п	Тема.	/емые :нции	тр	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			
л / п	тема. Основные вопросы	Формируемые компетенции	Семестр	Лекции	Практиче- ские заня- тия	Лаборатор- ные занятия	Самосто- ятельная работа
1	Основные физические свойства жидкостей и газов. Предмет гидравлики. Основы кинематики	ОПК-1	4	2	2	2	5
2	Общие законы и уравнения динамики. Подобие гидродинамических процессов	ОПК-1	4	2	2	2	5
3	Одномерные потоки жидко- стей. Местные гидравличе- ские сопротивления.	ОПК-1	4	2	2	2	5
4	Истечение жидкости и газа через отверстия и насадки. Гидравлический расчет трубопроводов.	ОПК-1	4	2	2	2	6

№ п	Тема.	уемые гнции стр				остоятельну	і работы, включа ию работу студен кость (в часах)	
л / п	тема. Основные вопросы	Формиру	Формируемые компетенции Семестр		кции	Практиче- ские заня- тия	Лаборатор- ные занятия	Самосто- ятельная работа
5	Расчет трубопроводных систем. Гидравлический расчет тупиковых и кольцевых водопроводных сетей.	ОПК-1	4		2	2	2	6
6	Сельскохозяйственное водо- снабжение. Сооружения на водопроводной сети.	ОПК-1	4		2	2	2	6
7	Гидравлические машины. Основные параметры: подача, напор, мощность, КПД.	ОПК-1	4		2	2	2	6
8	Теоретический напор. Полезный напор. Баланс энергии	ОПК-1	4		2	2	2	6
9	Последовательное и параллельное соединение насосов. Регулирование подачи. Оросительные системы	ОПК-1	4		2	2	2	6
	Итого			18		18	18	51

6 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1. Иваненко, И. И. Гидравлика: учебное пособие / И. И. Иваненко. — Санкт-Петербург: Санкт-Петербургский государственный архитектурностроительный университет, ЭБС АСВ, 2012. — 150 с. — ISBN 978-5-9227-0412-6. — Текст: электронный доступ http://www.iprbookshop.ru/18992.html

Крестин, Е. А. Примеры решения задач по гидравлике : учебное пособие / Е. А. Крестин. — Самара : Самарский государственный архитектурностроительный университет, ЭБС АСВ, 2012. — 203 с. — ISBN 978-5-9585-0462-6. — Текст : электронный доступ http://www.iprbookshop.ru/20449.html

7 Фонд оценочных средств для проведения промежуточной аттестации

7.1 Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП ВО

	Этапы формирования и проверки уровня сформированно-
Номер семестра*	сти компетенций по дисциплинам,
	практикам в процессе освоения ОПОП ВО

ОПК-1 — способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей.

1, 2, 3	Математика с элементами статистики	
1, 2, 3	Физика	
2	Химия	
2	Материаловедение	
2, 3, 4	Теоретическая механика	
3	Технология конструкционных материалов	
3	Сопротивление материалов	
4	Метрология, стандартизация и сертификация	
4	Термодинамика и теплопередача	
4	Гидравлика	
4, 5	Детали машин и основы конструирования	
4, 5	Теория механизмов и машин	
5	Конструкции автомобилей и тракторов	
5	Электротехника, электроника и электропривод	
6	Конструкции технических средств АПК	
6	Теория технических средств	
6	Технологическая (производственно-технологическая)	
	практика	
7	Теория автомобилей и тракторов	
9	Основы научных исследований	
	Государственная итоговая аттестация	
	Защита выпускной квалификационной работы, включая	
	подготовку к защите и процедуру защиты	

7.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалы оценивания

Планируемые результаты освоения					
компетенции (индикаторы достижения компетенции)	неудовлетвори- тельно (минимальный не достигнут)	удовлетвори- тельно (минималь- ный порого- вый)	хорошо (средний)	отлично (высокий)	Оценочное средство

ОПК-1 — способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей.

Планируемые результаты освоения					
компетенции (индикаторы достижения компетенции)	неудовлетвори- тельно (минимальный не достигнут)	удовлетвори- тельно (минималь- ный порого- вый)	хорошо (средний)	отлично (высокий)	Оценочное средство
ИД-1 _{ОПК-1} Использует основные законы естественнона- учных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	Не способен использовать основные законы естественнонаучных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	Сформирована способность с допущением ошибок использовать основные законы естественнонаучных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	С допущением незначительных ошибок использует основные законы естественнонаучных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	Использует основные законы естественнона- учных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	Темы рефератов, комплект задач для выполнения расчетнографической работы, комплект задач для выполнения лабораторной работы, комплект теоретических вопросов и практических заданий к зачету, фонд тестирования заданий.

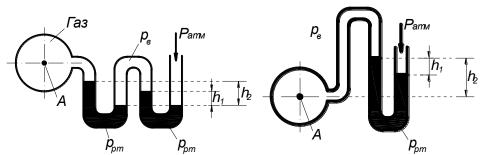
7.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций в процессе освоения ОПОП ВО

ОПК-1 Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий

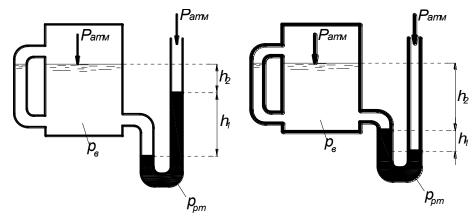
Темы рефератов

- 1. Сооружения на водопроводной сети.
- 2. Насосные станции.
- 3. Водонапорные башни.
- 4. Водоводы и магистральные трубопроводы.
- 5. Арматура водопроводной сети.
- 6. Водозаборные сооружения.
- 7. Сельскохозяйственные мелиорации.
- 8. Оросительные системы.

- 9. Источники орошения.
- 10. Оросительная и поливная норма.
- 11. Средства гидромеханизации при поливе.
- 12. Выбор системы орошения и оборудования для полива.
- 13. Дождевание сельскохозяйственных культур.
- 14.Внутрипочвенное орошение.
- 15. Мелиоративные каналы.
- 16. Способы орошения.
- 17. Методы и способы осушения земель.
- 18. Осушительная система и ее составные части.
- 19. Борьба с затоплением и подтоплением земель


Комплект задач для выполнения расчетно-графической работы

Определение гидростатического давления


- 1 Условия к задачам
- $1.1\,$ Для схем, представленных на рисунках $1.2\,$ и 1.3, определить вакуум в точке A с помощью ртутных манометров.
- 1.2 К закрытому резервуару, заполненному водой, (рисунки 1.4 и 1.5) подключен ртутный манометр. Определить давление на поверхность воды в резервуаре.
- 1.2 Трубопроводы A и B (рисунки 1.6 и 1.7) заполнены водой. Определить давление в центре трубопровода A с помощью дифференциального ртутного манометра, если давление в центре трубопровода в известно.

Примечание: Для всех вариантов задач выразить искомое давление в $\Pi a; m$ вод. ст.; mm. рт. ст.; $\kappa z/cm^2;$

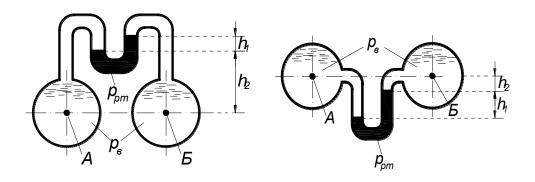

Данные для решения задач приводятся в таблице 1.1

Рисунок 1.2 – К задаче 1.2.1 *Рисунок 1.3* – К задаче 1.2.1

Рисунок 1.4 – K задаче 1.2.2 *Рисунок 1.5* – K задаче 1.2.2

Рисунок 1.6 – K задаче 1.2.3 *Рисунок 1.7* – K задаче 1.2.3

 $\it Tаблица~1.1$ — Данные к решению задач по определению гидростатического давления

Номер зада-	Расчетная схе-	Пока маном	Давление в точ- ке В, Мпа	
кин	ма	h1	h2	RC D, Mila
1		0,10	0,20	-
2		0,12	0,21	-
3	Рис. 1.2	0,15	0,22	-
4		0,20	0,25	-
		h_1	h_2	
5		0,25	0,30	-
6	Рис. 1.3	0,30	0,40	-
7	ГИС. 1.3	0,35	0,50	-
8		0,80	0,90	-
9		0,15	1,50	-
10	Рис. 1.4	0,17	2,00	-
11	Рис. 1.4	0,15	2,40	-
12		0,10	2,80	-
13	Рис. 1.5	0,15	1,20	-

14		0,13	1,80	-
15		0,15	2,50	-
16		0,18	3,00	-
17		0,20	0,00	0,10
18		3,15	1,00	0,15
19	Рис. 1.6	0,10	1,20	0,20
20		0,06	1,30	0,25
21		0,20	2,20	0,30
22		0,12	2,00	0,05
23	Рис. 1.7	0,15	1,50	1,18
24		0,20	1,20	0,22
25		0,10	0,70	0,45

Примечание: - температура воды и ртути равна 18 °C.

Примеры заданий лабораторных работ

Лабораторная работа № 1. Гидростатическое давление. Приборы для его измерения. закон паскаля

- Ознакомиться с основными теоретическими положениями. Изучить виды давлений и шкалы их отсчета.
- Изучить устройство и принцип действия приборов для измерения давлений. Изучить свойства гидростатического давления.
- Установить связь изменения давления в данной точке жидкости с изменением давления на её поверхности.
- Определить гидростатическое давление в жидкости на различных глубинах от её поверхности.

Лабораторная работа №2. Определение силы гидростатического давления на плоские поверхности.

- Определить силу избыточного гидростатического давления (силу давления воды) на плоскую вертикальную стенку с помощью графоаналитического расчета.
 - Сравнить результаты расчета с результатами опыта.

Лабораторная работа № 3. Исследование режимов движения жидкости.

- Опытным путем пронаблюдать границу между ламинарным и турбулентным режимами движения жидкости.
- Определить число Рейнольдса

⁻ при решении задач приняты такие значения плотности ρ некоторых жидкостей: вода $1000 - \text{кг/m}^3$; ртуть $- 13600 \text{ кг/m}^3$.

Вопросы к экзамену

- 1. Гидростатическое давление, его свойства, единицы измерения давления. Вакуум. Понятия геометрической и вакуумметрической высоты гидростатического напора.
- 2. Дифференциальное уравнение равновесия несжимаемой жидкости (уравнение Эйлера), находящейся под действием сил тяжести и инерции.
- 3. Интегрирование дифференциального уравнения равновесия несжимаемой жидкости. Основное уравнение гидростатики, его физическая сущность.
- 4. Приборы для измерения гидростатического давления. Пьезометр вакуумметр, манометр и т.д. Эпюра гидростатического давления на плоские поверхности (примеры).
- 5. Сила гидростатического давления на плоские поверхности. Понятие центра давления (примеры).
- 6. Графический и аналитический способы определения силы гидростатического давления на плоские поверхности.
- 7. Основные понятия гидродинамики (скорость, гидродинамическое давление, сопротивление движения, установившееся и неустановившееся, неравномерное движение).
- 8. Струйная модель жидкости. Понятия траектории, линия тока, трубка тока элементарной струйки, элементарного расхода, живого сечения струйки.
- 9. Дифференциальное уравнение движения идеальной жидкости (уравнение Эйлера), его физическая сущность.
- 10. Элементы потока: живое сечение, смоченный периметр, гидравлический радиус, эквивалентный диаметр. Понятие потоков. Расход и средняя скорость. Эпюры скорости. Местная скорость
- 11. Уравнение неразрывности для элементарной струйки и всего потока несжимаемой жидкости при установившемся движении (примеры применения уравнения при решении задач).
- 12. Вывод уравнения Бернулли для элементарной струйки идеальной жидкости, устанавливающего связь между скоростью и давлением в различных сечениях.
- 13. Уравнение Д. Бернулли для струйки реальной жидкости. Его физическая, энергетическая, геометрическая интерпретация.
- 14. Уравнение Д. Бернулли для установившегося движения потока реальной жидкости. Основные условия применения, уравнения Д. Бернулли к потоку жидкости (примеры).
- 15. Режимы движения жидкости. Критические скорость потока и число Рейнольдса.

- 16. Гидравлические сопротивления, на какие виды подразделяются. Формулы для определения потерь напора.
- 17. Формула для определения коэффициента трения по длине (коэффициента Дарси) при ламинарном режиме. Пример расчета трубопровода при ламинарном режиме движения жидкости.
- 18. Обосновать три области гидравлических сопротивлений при турбулентном режиме течения жидкости в напорном трубопроводе.
- 19. Формулы для определения коэффициента трения для трех областей сопротивления турбулентного потока. Дать их физический смысл.
- 20. Формула Шези для средней скорости и расхода потока. Связь формулы Шези с формулой для определения потерь напора Дарси-Вейсбаха.
- 21. Местные потери напора. Формула Вейсбаха для определения местных потерь напора. Виды местных сопротивлений.
- 22. Короткие и длинные трубопроводы. Расходная и скоростная характеристики, удельное сопротивление трубопровода.
- 23. Представить пример гидравлического расчета сифонного трубопровода.
- 24. Гидравлический расчет простого трубопровода, состоящего из последовательно соединенных труб разных диаметров.
- 25. Гидравлический расчет трубопровода с параллельным соединением труб. Понятие о путевом расходе, удельном, транзитном и расчетном расходах.
- 26. Гидравлический расчет простого трубопровода. Три основные задачи расчета простого трубопровода.
 - 27. Расчет разомкнутой (тупиковой) трубопроводной сети.
- 28. Формулы для определения скорости и расхода при истечении жидкости из отверстия в тонкой стенке при постоянном напоре в атмосферу (привести примеры).
- 29. Формулы для определения скорости и расхода при истечении жидкости из отверстия в тонкой стенке при постоянном напоре под уровень (привести примеры).
- 30. Понятие об истечении жидкостей. Коэффициенты сжатия, скорости и расхода. Понятие о малом и большом отверстии при истечении жидкости.
- 31. Истечение жидкости через насадки. Типы насадков. О дополнительных потерях напора в насадках по отношению к отверстию в тонкой стенке. Явление увеличения расхода жидкости при истечении через насадки.
 - 32. Истечение жидкостей из-под щита с постоянным напором.
- 33. Формула для расхода при истечении жидкости из насадков при постоянном напоре в атмосферу и под уровень.
- 34. Классификация лопастных насосов. Формула теоретического напора центробежного насоса. Рабочие параметр центробежного насоса: напор, подача, высота всасывания, потребляемая мощность, кпд.
- 35.Классификация и область применения насосов, их параметры: напор, подача, мощность, к.п.д. Область применения насосов.

- 36. Напор и подача центробежных насосов. Вывод уравнения Эйлера.
- 37. Построить рабочую характеристику центробежного насоса (пример). Нанести характеристику трубопровода и определить рабочую точку при работе насоса на водопроводную сеть (подача, напор, к.п.д. мощность).
- 38. Последовательная работа насосов на водопроводную сеть. Определить рабочую точку насоса и подобрать требуемый насос с помощью его характеристик.
- 39. Параллельная работа насосов на водопроводную сеть. Определить рабочую точку насоса и подобрать требуемый насос с помощью его характеристик.
- 40.Осевые насосы. Принцип действия, особенности и область применения осевого насоса. Характеристики насосов с поворотно-лопастными рабочими колесами, способы регулирования расхода осевого насоса.
- 41. Поршневые насосы. Принцип действия и устройство, область применения поршневого насоса, его достоинства и недостатки.
- 42. Роторные насосы. Устройство, принцип действия и область применения роторных насосов. Характеристика и способы регулирования подачи.
- 43.Основные понятия и определения объемного гидропривода. Классификация, регулируемый и нерегулируемый гидропривод. Начертить типовую схему объемного гидропривода с разомкнутой и замкнутой циркуляцией рабочей жидкости.
- 44. Понятие водохозяйственного комплекса. Компоненты, входящие в водохозяйственный комплекс. Роль его в сельскохозяйственном производстве.
- 45. Понятие о сельскохозяйственном водоснабжении. Особенности водоснабжения животноводческих и птицеводческих ферм. Механизация и автоматизация технологического процесса водоснабжения. Насосные станции 1 и 2 польема.
- 46. Схемы и системы водоснабжения, групповые и локальные водопроводы, башенные безбашенные схемы водоснабжения. Определить расчетный расход и напор насосной станции.
- 47. Нормы и режимы водопотребления. Графики суточного и годового водопотребления. Интегральная кривая водопотребления. Конструкция водонапорной башни.
- 48. Основные элементы систем водоснабжения. Устройства для забора воды из поверхностных источников и захвата подземных вод.
- 49. Водопроводная арматура. Конструкция запорно-регулирующей, предохранительной и водозаборной арматуры, использующейся в системах водоснабжения. Средства механизации подъема воды.
- 50. Движение грунтовых вод. Фильтрация, формула Дарси для скорости фильтрации. Приток грунтовых вод к колодцу (мощность водоносного пласта, глубина откачки, депрессионная воронка, радиус влияния колодца). Дебит колодца.

- 51. Понятие о мелиорации земель и водной мелиорации. Что называется орошением, какие существуют виды орошения. Режим орошения, сроки и нормы поливов.
- 52. Конструкции оросительных систем. Открытые, закрытые и комбинированные оросительные системы. Привести их схемы.
- 53. Суммарное водопотребление сельскохозяйственных культур при орошении. Расчет режима орошения. Понятие о коэффициенте водопотребления, суммарного водопотребления, оросительной и поливной норме.
- 54.Поливной расход, гидромодуль, размеры всех элементов оросительной системы. Графики гидромодуля и водоподачи.
- 55.Способы полива сельскохозяйственных культур. Поверхностный полив, дождевание, почвенное и капельное орошение.
- 56.Типы оросительных насосных станций. Расчет расхода и напора насосной станции.
- 57. Осушение земель. Мелиорация переувлажненных земель. Регулирование водного режима почвы и ускорение отвода избыточного поверхностного стока. Способы агромелиоративных мероприятий на переувлажненных почвах.
- 58.Способы осушения (открытые каналы, дренаж, кротование, глубокая вспашка).

Примеры теста

Примеры теста

- 1. При температуре t=0°С происходит...
- замедление стока;
- кристаллизация воды;
- таяние льда;
- увеличение пропускной способности трубопровода.
- 2. Сжимаемость капельных жидкостей характеризуется коэффициен-TOM...
 - температурного расширения;
 - объемного сжатия.
 - гидравлического сопротивления;
 - гидравлического трения.
 - 3. Модуль упругости жидкости находится по формуле...

$$- \qquad \gamma = \frac{G}{V};$$

$$v = \frac{V}{m};$$

$$- v = \frac{V}{m};$$

$$- v = \frac{1}{\rho};$$

- $E_0 = \frac{1}{\beta_D}.$
- 4. Модуль упругости при температуре t=20°C будет больше...
- у минерального масла, используемого в механизмах с гидравлическим приводом;
- у глицерина;
- у ртути;
- у бензина.
- 5. Модуль упругости при температуре t=20°C будет меньше...
- у минерального масла, используемого в механизмах с гидравлическим приводом;
- у глицерина;
- у ртути;
- у бензина.
- 5. Вязкость жидкости это...
- вес единицы объема жидкости (газа);
- объем, занимаемый единицей массы жидкости;
- отношение массы жидкости (газа) к ее объему;
- свойство жидкости (газа) оказывать сопротивление относительному движению ее частиц.
- 6. Динамическая вязкость это...
- вес единицы объема жидкости (газа);
- коэффициент пропорциональности µ;
- объем, занимаемый единицей массы жидкости;
- отношение массы жидкости (газа) к ее объему.
- 7. Кинематическая вязкость измеряется в системе Си в...
- H;
- Па;
- M^2/c :
- Па·с.
- 8. Идеальная жидкость это ...
- вязкая жидкость;
- плотная жидкость;
- абсолютно несжимаемая жидкость с отсутствием касательного напряжения;
- абсолютно сжимаемая жидкость.

- 9. Плоскость равного давления это ...
- плоскость, на которой давление изменяется по закону гидростатики;
- плоскость давление в каждой точке одинаково;
- плоскость давление в каждой точке, которой изменяется по параболе;
- плоскость, на которой давление равно нулю.
- 10. Свойство жидкости оказывать сопротивление касательным усилиям называется ...
- сжимаемостью;
- вязкостью;
- плотностью;
- кавитацией.
- 11. Кавитация это ...
- местное понижение давления;
- местное увеличение скорости;
- местное повышение давления до 100 атм;
- местное падение напора.
- 12. Плоскость равного давления (отсчета) должна быть ...
- вертикальной;
- возрастающей;
- убывающей;
- горизонтальной.
- 13. Удельная потенциальная энергия это ...
- удельная потенциальная энергия положения;
- удельная потенциальная энергия давления;
- сумма удельной потенциальной энергии положения и энергии давления;
- удельная кинетическая энергия.
- 14. Потенциальный напор соответствует ... давлению.
- избыточному;
- абсолютному;
- атмосферному;
- манометрическому.
- 15. Пьезометрическая высота соответствует ... давлению.
- абсолютному;
- избыточному;

- вакуумметрическому;
- манометрическому;
- 16. Высота столба жидкости в пьезометре, присоединённом к отверстию в стенке трубы характеризует:
- величину абсолютного давления в трубопроводе;
- величину избыточного давления в трубопроводе;
- величину гидродинамического давления в трубопроводе;
- величину полного давления в трубопроводе.
- 17. Начальным напряжением сдвига обладает жидкая среда:
- вода;
- нефть;
- бетонный раствор;
- глицерин;
- 18. Тело вращения, состоящее из цилиндра и конуса, имеющих общее основание, погружено в жидкость горизонтально. Больше будет горизонтальная сила, действующая на тело:
- со стороны цилиндра;
- со стороны конуса;
- силы равны;
- со стороны тела, имеющего больший объём.
- 19. Линией тока называется ...
- след, оставленный в пространстве частичкой жидкости;
- касательная, проведенная к вектору скорости;
- совокупность следов оставленных в пространстве частицами жидкости;
- кривая, соединяющая две частички жидкости в данный момент времени.
- 20. Траекторией движения жидкости называется ...
- касательная, проведенная к вектору скорости;
- след, оставленный в пространстве частичкой жидкости;
- совокупность следов оставленных в пространстве частицами жидкости;
- кривая, соединяющая две частички жидкости в данный момент времени.
- 21. Расходом потока жидкости называется ...
- движущейся объем жидкости конечных размеров;

- количество жидкости, проходящее через живое сечение потока в единицу времени;
- единица веса жидкости, проходящей через живое сечение потока в единицу времени;
- отношение веса жидкости к единице времени;

22. Местной или мгновенной скоростью называется ...

- средняя скорость потока жидкости;
- скорость в данной точке жидкости;
- скорость на дне потока;
- скорость по оси потока.

23. Установившееся движение жидкости - это ...

- движение, при котором элементы потока (расход, скорость, глубина, давление и др.) изменяются по времени;
- движение, при котором давление и скорость потока постоянны по времени в данной точке;
- движение, при котором поток соприкасается по всему периметру со стенками русла;
- движение с постоянной средней скоростью.

24. Неустановившееся движение жидкости - это ...

- движение, при котором элементы потока постоянны по времени в данной точке;
- движение, при котором поток соприкасается по всему периметру со стенками русла;
- движение, при котором в данной точке скорость и давление изменяются по времени;
- движение с постоянной средней скоростью;

25. Равномерное движение жидкости - это ...

- по длине потока изменяются средние скорости и глубина;
- движение, у которого площадь живого сечения изменяется по длине потока;
- движение, у которого средние скорости и глубина постоянны;
- движение, при котором поток соприкасается по всему периметру со стенками русла.

26. Неравномерное движение жидкости - это ...

- движение, у которого площадь живого сечения изменяется по длине потока;
- по длине потока изменяются средние скорости и глубина;
- движение, у которого средние скорости и глубина постоянны;

- движение, при котором поток соприкасается по всему периметру со стенками русла.
- 27. Средняя скорость потока при турбулентном режиме это ...
- осредненная скорость на оси потока;
- осредненная скорость по времени;
- осреднённая скорость по живому сечению;
- осредненная скорость по смоченному периметру.
- 28. Скорость в безнапорном потоке можно измерить ...
- с помощью пьезометра;
- с помощью трубки Прандтля;
- с помощью трубки Пито;
- с помощью манометра.
- 29. Расчет прибора Вентури основан на применении ...
- уравнения равномерного движения;
- уравнение Эйлера;
- уравнения Бернулли;
- формулы Торичелли;
- 30. Плоскость равного давления при относительном покое жидкости может быть ...
- криволинейной;
- наклонной;
- горизонтальной;
- криволинейной, наклонной и горизонтальной.
- 31. Удельный вес жидкости (газа) это...
- вес единицы объема жидкости (газа);
- масса жидкости (газа), заключенная в единице объема;
- отношение массы жидкости (газа) к ее объему;
- свойство жидкости (газа) оказывать сопротивление относительному движению ее частиц;
 - 32. Плотность жидкости это...
 - вес единицы объема жидкости (газа);
 - объем, занимаемый единицей массы жидкости;
 - отношение массы жидкости (газа) к ее объему;
- свойство жидкости (газа) оказывать сопротивление относительному движению ее частиц;
 - 33. Удельный объем жидкости это...

- вес единицы объема жидкости (газа);
- объем, занимаемый единицей массы жидкости;
- отношение массы жидкости (газа) к ее объему;
- свойство жидкости (газа) оказывать сопротивление относительному движению ее частиц;
 - 34. Удельный вес жидкости измеряется в системе СИ в...
 - − Πa;
 - H/M^3 ;
 - $\kappa \Gamma / M^3$;
 - °C;
 - 35. Удельный вес жидкости находится по формуле...
 - $\gamma = \frac{G}{V};$
 - $-v = \frac{V}{m}$;
 - $-v=\frac{1}{\rho};$
 - $-\rho = \frac{m}{V}$;
 - 36. Плотность жидкости находится по формуле...
 - $-\gamma = \frac{G}{V};$
 - $-v=\frac{V}{m}$;
 - $-v=\frac{1}{\rho}$;
 - $-\rho = \frac{m}{V}$;
 - 37. Плотность жидкости измеряется в системе СИ в...
 - Πa;
 - $-H/M^3$;
 - $K\Gamma / M^3;$
 - $-\kappa\Gamma$;
- 38. Плотность и удельный вес жидкости в производственных условиях измеряют...
 - вакууметром;
 - ареометром;
 - барометром;
 - амперметром;

- 39. Максимальное значение плотности при температуре t=20°C имеет...
- чистая вода;
- морская вода;
- бензин;
- нефть;
- 40. Удельный объем жидкости находится по формулам...
- $\gamma = \frac{G}{V};$
- $-v=\frac{V}{m};$
- $-v=\frac{1}{\rho};$
- $-\rho = \frac{m}{V};$
- 41. Удельный объем жидкости в системе СИ измеряется в...
- $M^3/K\Gamma$;
- H;
- $\kappa \Gamma / M^3$;
- $\kappa \Gamma;$
- 42. При температуре t=0°C происходит...
- замедление стока;
- кристаллизация воды;
- таяние льда;
- увеличение пропускной способности трубопровода;
- 43. Сжимаемость капельных жидкостей характеризуется коэффициентом...
 - объемного сжатия;
 - температурного расширения;
 - гидравлического сопротивления;
 - гидравлического трения;
 - 44. Модуль упругости жидкости находится по формуле...
 - $\gamma = \frac{G}{V};$
 - $-v=\frac{V}{m};$
 - $-v = \frac{1}{0}$;
 - $-E_0=\frac{1}{\beta_0} \ ;$

- 45. Модуль упругости при температуре t=20°C будет больше...
- у минерального масла, используемого в механизмах с гидравлическим приводом;
 - у глицерина;
 - у ртути;
 - у бензина;
 - 46. Модуль упругости при температуре t=20°C будет меньше...
- у минерального масла, используемого в механизмах с гидравлическим приводом;
 - у глицерина;
 - у ртути;
 - у бензина;
 - 47. Вязкость жидкости это...
 - вес единицы объема жидкости (газа);
 - объем, занимаемый единицей массы жидкости;
 - отношение массы жидкости (газа) к ее объему;
- свойство жидкости (газа) оказывать сопротивление относительному движению ее частиц;
 - 48. Динамическая вязкость это...
 - коэффициент пропорциональности μ;
 - вес единицы объема жидкости (газа);
 - объем, занимаемый единицей массы жидкости;
 - отношение массы жидкости (газа) к ее объему;
 - 49. Кинематическая вязкость измеряется в системе Си в...
 - H;
 - $-\Pi a;$
 - M^2/c ;
 - $-\Pi a \cdot c$;
 - 50. Потери напора это...
 - потери энергии в потоке;
 - потери энергии по длине потока;
 - потери энергии в данном месте потока;
 - затраты энергии на преодоление сил тяжести;
- 51. Расчет трубопровода из труб разного диаметра производится с помощью уравнений...
 - уравнение Д.Бернулли;
 - уравнение неразрывности потокам;

- формула расхода жидкости;
- формула Шези;
- 52. Формула Шези для расхода жидкости это...
- $-Q = \omega \cdot V$;
- $-Q = \omega \cdot c\sqrt{Ri} ;$
- $-Q = \mu_0 \cdot \omega \sqrt{2gZ} ;$
- $-dQ = U \int d\omega$;
- 53. Гидравлический уклон это...
- отношение потерь напора к длине трубопровода;
- отношение пьезометрического напора к длине участка трубопровода;
- отношение превышения начальной и конечной отметки трубопровода к длине трубопровода;
 - отношение кинетической энергии к длине;
 - 54. Пьезометрический уклон это...
- отношение превышения начальной и конечной отметки трубопровода к длине трубопровода;
 - отношение потерь напора к длине трубопровода;
- отношение кинетической энергии потока к длине участка трубопровода;
 - отношение пьезометрического напора к длине участка трубопровода;
- 55. Скорость потока при равномерном движении отличается от скорости потока при неравномерном движении...
 - скорости равны в любой точке потока;
- скорость при равномерном движении практически равна скорости при неравномерном движении;
 - скорости не сопоставимы;
 - скорости равны в разных точках потока;
- 56. Физический смысл средней скорости потока при ламинарном режиме...
- дважды осредненная скорость потока по времени и живому сечению потока;
 - осредненная скорость по времени;
 - осредненная скорость по живому сечению;
 - скорость на поверхности потока;
- 57. Физический смысл средней скорости потока при турбулентном режиме...

- дважды осредненная скорость потока по времени и живому сечению потока;
 - осредненная скорость по времени;
 - осредненная скорость по живому сечению;
 - скорость на поверхности потока;
- 58. Установите отличие гидравлического уклона от пьезометрического...
 - уклоны равны при равномерном движении;
 - гидравлический уклон всегда положителен;
- пьезометрический уклон может быть положительным и отрицательным;
 - уклоны всегда равны;
 - 59. Гидравлический уклон...
 - равен нулю;
 - всегда положителен;
 - меньше нуля;
 - может быть положительным и отрицательным;
 - 60. Пьезометрический уклон...
 - равен нулю;
 - всегда положителен;
 - меньше нуля;
 - может быть положительным и отрицательным;
 - 61. Напорная линия это...
 - геометрическое место верхних концов отрезков суммы $Z + \frac{p}{\rho g} + \frac{\alpha V^2}{2g}$;
 - геометрическое место верхних концов отрезков суммы $\frac{p}{\rho g} + \frac{\alpha V^2}{2g}$;
 - геометрическое место верхних концов отрезков суммы $Z + \frac{p}{\rho g}$;
 - геометрическая высота z;

7.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков характеризующих этапы формирования компетенций

Контроль освоения дисциплины <u>Б1.О.37 «Гидравлика»</u> проводится в соответствии с Пл КубГАУ 2.5.1 «Текущий контроль успеваемости и промежуточная аттестация студентов». Текущий контроль по дисциплине позво-

ляет оценить степень восприятия учебного материала и проводится для оценки результатов изучения разделов/тем дисциплины. Текущий контроль проводится как контроль тематический (по итогам изучения определенных тем дисциплины) и рубежный (контроль определенного раздела или нескольких разделов, перед тем, как приступить к изучению очередной части учебного материала).

Критериями оценки реферата являются: новизна текста, обоснованность выбора источников литературы, степень раскрытия сущности вопроса, соблюдения требований к оформлению.

Оценка «отлично» — выполнены все требования к написанию реферата: обозначена проблема и обоснована её актуальность; сделан анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция; сформулированы выводы, тема раскрыта полностью, выдержан объём; соблюдены требования к внешнему оформлению.

Оценка «хорошо» — основные требования к реферату выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала; отсутствует логическая последовательность в суждениях; не выдержан объём реферата; имеются упущения в оформлении.

Оценка «удовлетворительно» — имеются существенные отступления от требований к реферированию. В частности: тема освещена лишь частично; допущены фактические ошибки в содержании реферата; отсутствуют выводы.

Оценка «неудовлетворительно» — тема реферата не раскрыта, обнаруживается существенное непонимание проблемы или реферат не представлен вовсе.

Тестовые задания

Оценка **«отлично»** выставляется при условии правильного ответа студента не менее чем на 85 % тестовых заданий.

Оценка **«хорошо»** выставляется при условии правильного ответа студента не менее чем на 70 % тестовых заданий.

Оценка **«удовлетворительно»** выставляется при условии правильного ответа студента не менее чем на 51 %.

Оценка **«неудовлетворительно»** выставляется при условии правильного ответа студента менее чем на 50 % тестовых заданий.

Критерии оценки на экзамене

Оценка «отлично» выставляется обучающемуся, который обладает всесторонними, систематизированными и глубокими знаниями материала учебной программы, умеет свободно выполнять задания, предусмотренные учебной программой, усвоил основную и ознакомился с дополнительной литературой, рекомендованной учебной программой. Как правило, оценка «отлично» выставляется обучающемуся усвоившему взаимосвязь основных положений и понятий дисциплины в их значении для приобретаемой специаль-

ности, проявившему творческие способности в понимании, изложении и использовании учебного материала, правильно обосновывающему принятые решения, владеющему разносторонними навыками и приемами выполнения практических работ.

Оценка «хорошо» выставляется обучающемуся, обнаружившему полное знание материала учебной программы, успешно выполняющему предусмотренные учебной программой задания, усвоившему материал основной литературы, рекомендованной учебной программой. Как правило, оценка «хорошо» выставляется обучающемуся, показавшему систематизированный характер знаний по дисциплине, способному к самостоятельному пополнению знаний в ходе дальнейшей учебной и профессиональной деятельности, правильно применяющему теоретические положения при решении практических вопросов и задач, владеющему необходимыми навыками и приемами выполнения практических работ.

Оценка «удовлетворительно» выставляется обучающемуся, который показал знание основного материала учебной программы в объеме, достаточном и необходимым для дальнейшей учебы и предстоящей работы по специальности, справился с выполнением заданий, предусмотренных учебной программой, знаком с основной литературой, рекомендованной учебной программой. Как правило, оценка «удовлетворительно» выставляется обучающемуся, допустившему погрешности в ответах на экзамене или выполнении экзаменационных заданий, но обладающему необходимыми знаниями под руководством преподавателя для устранения этих погрешностей, нарушающему последовательность в изложении учебного материала и испытывающему затруднения при выполнении практических работ.

Оценка «неудовлетворительно» выставляется обучающемуся, не знающему основной части материала учебной программы, допускающему принципиальные ошибки в выполнении предусмотренных учебной программой заданий, неуверенно с большими затруднениями выполняющему практические работы. Как правило, оценка «неудовлетворительно» выставляется обучающемуся, который не может продолжить обучение или приступить к деятельности по специальности по окончании университета без дополнительных занятий по соответствующей дисциплине.

8 Перечень основной и дополнительной учебной литературы

Основная учебная литература

1. Исаев, А. П. Гидравлика : учебник / А.П. Исаев, Н.Г. Кожевникова, А.В. Ещин. — Москва : ИНФРА-М, 2018. — 420 с. + Доп. материалы [Электронный ресурс; Режим доступа:

http://znanium.com/bookread2.php?book=937453 Электронно-библиотечная система «Znanium»;

- 2. Гидравлика: Учебник. 5-е изд., стер. СПб.: Издательство «Лань», 2015. 656 с.: ил. (Учебники для вузов. Специальная литература). Штеренлихт Д.В. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/reader/book/64346/?previewAccess=1#2 Электронно-библиотечная система «Лань»;
- 3. Сазанов, И. И. Гидравлика : учебник / И.И. Сазанов, А.Г. Схиртладзе, В.И. Иванов. Москва : КУРС, НИЦ ИНФРА-М, 2017. 320 с. (Бакалавриат). ISBN 978-5-16-105143-6. Текст : электронный. URL: http://znanium.com/bookread2.php?book=601869 Электронно-библиотечная система «Znanium».

Дополнительная учебная литература:

- 1. Гидравлика: учебное пособие / Е.В. Кузнецов, А. Е. Хаджиди, А. Н. Куртнезиров. изд. доп. Краснодар: КубГАУ, 2015. 88с. электронный доступ
- http://edu.kubsau.ru/file.php/109/Uchebnoe_posobie_po_gidravlike_NOVOE_2_.p
 df Образовательный портал КубГАУ
- 2. Гидравлика: учебное пособие / Расчет напорных водопроводных сетей и определение основных характеристик насосов. Хаджиди А.Е., Куртнезиров А.Н. Краснодар: КубГАУ, 2018. 88с. электронный доступ https://edu.kubsau.ru/file.php/109/Uchebnoe_posobie_po_Gidravlike_410538_v1_. PDF Образовательный портал КубГАУ
- 3. Гидравлика : метод. Рекомендации / сост. Е.В. Кузнецов, и др. Краснодар : КубГАУ, 2022. 93 с. электронный доступ <u>file:///C:/Users/218n-1/Downloads/Gidravlika_laboratornye.pdf</u>

9 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень ЭБС

№	Наимено-	Тематика	Начало действия	Наименование организации и
	вание ре-		и срок действия	номер договора
	cypca		договора	
1	Znanium.c	Универсальная	17.07.2019	Договор № 3818 ЭБС от
	om		16.07.2020	11.06.19
			17.07.2020	
			16.01.2021	Договор 4517 ЭБС от 03.07.20

			17.01.21 16.07.21	Договор 4943 ЭБС от 23.12.20
2	Издатель-	Ветеринария		ООО «Изд-во Лань»
	ство	Сельск. хоз-во	13.01.2020	Контракт №940 от 12.12.19
	«Лань»	Технология хра- нения и перера-	12.01.2021	
		ботки пищевых продуктов	13.01.21	Контракт № 814 от 23.12.20 (с
			12.01.22	2021 года отд. контракты на
				ветеринарию и технологию
				перераб.)
				Контракт № 512 от 23.12.20.
3	IPRbook	Универсальная	12.11.2019-	ООО «Ай Пи Эр Медиа» Ли-
			11.05.2020	цензионный договор№5891/19
				от 12.11.19
			12.05.2020	
			11.11.2020	ООО «Ай Пи Эр Медиа» Ли-
				цензионный договор№6707/20
			12.11.2020	от 06.05.20
			11.05.2021	
				ООО «Ай Пи Эр Медиа» Ли-
				цензионный договор№7239/20
				от 27.10.20

10 Методические указания для обучающихся по освоению дисциплины

1. Гидравлический расчет водопроводной сети: методические рекомендации к практическим занятиям по гидравлике / А. Е. Хаджиди, А. Н. Куртнезиров. Краснодар: КубГАУ, 2016. – 96с.

https://edu.kubsau.ru/file.php/109/Metodicheskie_rekomedacii_po_gidravlike_536 472_v1_.PDF

2. Вербицкий, В. М. Гидравлика : методические рекомендации по расчету движения жидкости в напорных трубопроводах / В. М. Вербицкий. — Москва : Московская государственная академия водного транспорта, 2016. — 25 с. — ISBN 2227-8397. — Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. — URL: http://www.iprbookshop.ru/65844.html

11 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине позволяют:

- обеспечить взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие посредством сети "Интернет";
- фиксировать ход образовательного процесса, результатов промежуточной аттестации по дисциплине и результатов освоения образовательной программы;
- организовать процесс образования путем визуализации изучаемой информации посредством использования презентаций, учебных фильмов;
- контролировать результаты обучения на основе компьютерного тестирования.

Перечень лицензионного ПО

№	Наименование	Краткое описание
1	MicrosoftWindows	Операционная система
2	Microsoft Office (включаетWord, Excel,	Пакет офисных приложений
	PowerPoint)	
3	MicrosoftVisio	Схемы и диаграммы
4	AutodeskAutocad	САПР
5	Система тестирования INDIGO	Тестирование

12. Материально-техническое обеспечение обучения по дисциплине для лиц с OB3 и инвалидов

Входная группа в главный учебный корпус оборудован пандусом, кнопкой вызова, тактильными табличками, опорными поручнями, предупреждающими знаками, доступным расширенным входом, в корпусе есть специально оборудованная санитарная комната. Для перемещения инвалидов и ЛОВЗ в помещении имеется передвижной гусеничный ступенькоход. Корпус оснащен противопожарной звуковой и визуальной сигнализацией

№	Наименование учебных	Наименование помещений для проведе-	Адрес (местоположение) помещений
Π/Π	предметов, курсов, дисци-	ния всех видов учебной деятельности,	для проведения всех видов учебной
	плин (модулей), практики,	предусмотренной учебным планом, в	деятельности, предусмотренной
	иных видов учебной дея-	том числе помещения для самостоя-	учебным планом (в случае реализа-
	тельности, предусмотрен-	тельной работы, с указанием перечня	ции образовательной программы в
	ных учебным планом обра-	основного оборудования, учебно-	сетевой форме дополнительно ука-
	зовательной программы	наглядных пособий и используемого	зывается наименование организации,
		программного обеспечения	с которой заключен договор)
1	2	3	4
1	<u> </u>	3	+

І Пи	идравлика	Помещение №221 ГУК, площадь — 101 M^2 ; посадочных мест 95, учебная ауди-	
		м~: посаоочных мест уз. vчеоная avou-	
		1	
1		тория для проведения занятий лекцион-	
		ного типа, занятий семинарского типа,	
		курсового проектирования (выполнения	
		курсовых работ), групповых и индиви-	
		дуальных консультаций, текущего кон-	
		троля и промежуточной аттестации,	
		в том числе для обучающихся с инва-	350044, г. Краснодар, ул. им. Кали-
		лидностью и ОВЗ	нина д. 13, здание главного учебного
			корпуса
			корпуса
		специализированная мебель (учебная	
		доска, учебная мебель) , в том числе для	
		обучающихся с инвалидностью и ОВЗ;	
		технические средства обучения, наборы	
		демонстрационного оборудования и	
		учебно-наглядных пособий (ноутбук,	
		проектор, экран), в том числе для обу-	
		чающихся с инвалидностью и <i>ОВЗ</i>	
		,	
2 Ги	ідравлика	114 300 учебная аудитория для прове-	
		дения занятий семинарского типа, кур-	
		сового проектирования (выполнения	
		курсовых работ), групповых и индиви-	
		дуальных консультаций, текущего кон-	
		троля и промежуточной аттестации,	
		в том числе для обучающихся с инва-	
		лидностью и <i>ОВЗ</i> Помещение	
		№114 300, посадочных мест — 25;	
		площадь — 43м²; учебная аудитория для	350044, г. Краснодар, ул. им. Кали-
		проведения занятий семинарского типа,	нина д. 13, здание корпуса зооинже-
		курсового проектирования (выполнения	нерного факультета
		курсовых работ), групповых и индиви-	1 1 /
		дуальных консультаций, текущего кон-	
		троля и промежуточной аттестации,	
		в том числе для обучающихся с инва-	
		в том числе оля обучающихся с инви- лидностью и ОВЗ	
		лионостью и ОВЗ	
		специализированная мебель(учебная	
		доска, учебная мебель), в том числе для	
1		, ,	
		обучающихся с инвалидностью и ОВЗ	

13. Особенности организации обучения лиц с ОВЗ и инвалидов

Для инвалидов и лиц с OB3 может изменяться объём дисциплины (модуля) в часах, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося (при этом не увеличивается количество зачётных единиц, выделенных на освоение дисциплины).

Фонды оценочных средств адаптируются к ограничениям здоровья и восприятия информации обучающимися.

Основные формы представления оценочных средств – в печатной форме или в форме электронного документа.

Формы контроля и оценки результатов обучения инвалидов и лиц с OB3

Категории	Форма контроля и оценки результатов обучения
студентов с ОВЗ и инва- лидностью	
С нарушением зрения	 устная проверка: дискуссии, тренинги, круглые столы, собеседования, устные коллоквиумы и др.; с использованием компьютера и специального ПО: работа с электронными образовательными ресурсами, тестирование, рефераты, курсовые проекты, дистанционные формы, если позволяет острота зрения графические работы и др.; при возможности письменная проверка с использованием рельефно- точечной системы Брайля, увеличенного шрифта, использование специальных технических средств (тифлотехнических средств): контрольные, графические работы, тестирование, домашние задания, эссе, отчеты и др.
С нарушением слуха	 письменная проверка: контрольные, графические работы, тестирование, домашние задания, эссе, письменные коллоквиумы, отчеты и др.; с использованием компьютера: работа с электронными образовательными ресурсами, тестирование, рефераты, курсовые проекты, графические работы, дистанционные формы и др.; при возможности устная проверка с использованием специальных технических средств (аудиосредств, средств коммуникации, звукоусиливающей аппаратуры и др.): дискуссии, тренинги, круглые столы, собеседования, устные коллоквиумы и др.
С нарушением опорно- двигательного аппарата	 письменная проверка с использованием специальных технических средств (альтернативных средств ввода, управления компьютером и др.): контрольные, графические работы, тестирование, домашние задания, эссе, письменные коллоквиумы, отчеты и др.; устная проверка, с использованием специальных технических средств (средств коммуникаций): дискуссии, тренинги, круглые столы, собеседования, устные коллоквиумы и др.; с использованием компьютера и специального ПО (альтернативных средств ввода и управления компьютером и др.): работа с электронными образовательными ресурсами, тестирование, рефераты, курсовые проекты, графические работы, дистанционные формы

<u></u>
предпочтительнее обучающимся, ограниченным в передвижении и др.

Адаптация процедуры проведения промежуточной аттестации для инвалидов и лиц с OB3:

В ходе проведения промежуточной аттестации предусмотрено:

- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей;
 - увеличение продолжительности проведения аттестации;
- возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).

Формы промежуточной аттестации для инвалидов и лиц с ОВЗ должны учитывать индивидуальные и психофизические особенности обучающегося/обучающихся по АОПОП ВО (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.).

Специальные условия, обеспечиваемые в процессе преподавания дисциплины

Студенты с нарушениями зрения

- предоставление образовательного контента в текстовом электронном формате, позволяющем переводить плоскопечатную информацию в аудиальную или тактильную форму;
- возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента;
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- использование чёткого и увеличенного по размеру шрифта и графических объектов в мультимедийных презентациях;
- использование инструментов «лупа», «прожектор» при работе с интерактивной доской;
- озвучивание визуальной информации, представленной обучающимся в ходе занятий;
 - обеспечение раздаточным материалом, дублирующим информа-

цию, выводимую на экран;

- наличие подписей и описания у всех используемых в процессе обучения рисунков и иных графических объектов, что даёт возможность перевести письменный текст в аудиальный,
- обеспечение особого речевого режима преподавания: лекции читаются громко, разборчиво, отчётливо, с паузами между смысловыми блоками информации, обеспечивается интонирование, повторение, акцентирование, профилактика рассеивания внимания;
- минимизация внешнего шума и обеспечение спокойной аудиальной обстановки;
- возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, на ноутбуке, в виде пометок в заранее подготовленном тексте);
- увеличение доли методов социальной стимуляции (обращение внимания, апелляция к ограничениям по времени, контактные виды работ, групповые задания и др.) на практических и лабораторных занятиях;
- минимизирование заданий, требующих активного использования зрительной памяти и зрительного внимания;
- применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы.

Студенты с нарушениями опорно-двигательного аппарата (маломобильные студенты, студенты, имеющие трудности передвижения и патологию верхних конечностей)

- возможность использовать специальное программное обеспечение и специальное оборудование и позволяющее компенсировать двигательное нарушение (коляски, ходунки, трости и др.);
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- применение дополнительных средств активизации процессов запоминания и повторения;
 - опора на определенные и точные понятия;
 - использование для иллюстрации конкретных примеров;
 - применение вопросов для мониторинга понимания;
- разделение изучаемого материала на небольшие логические блоки;
- увеличение доли конкретного материала и соблюдение принципа от простого к сложному при объяснении материала;
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;

- увеличение доли методов социальной стимуляции (обращение внимания, аппеляция к ограничениям по времени, контактные виды работ, групповые задания др.);
- обеспечение беспрепятственного доступа в помещения, а также пребывания них;
- наличие возможности использовать индивидуальные устройства и средства, позволяющие обеспечить реализацию эргономических принципов и комфортное пребывание на месте в течение всего периода учёбы (подставки, специальные подушки и др.).

Студенты с нарушениями слуха (глухие, слабослышащие, позднооглохшие)

- предоставление образовательного контента в текстовом электронном формате, позволяющем переводить аудиальную форму лекции в плоскопечатную информацию;
- наличие возможности использовать индивидуальные звукоусиливающие устройства и сурдотехнические средства, позволяющие осуществлять приём и передачу информации; осуществлять взаимообратный перевод текстовых и аудиофайлов (блокнот для речевого ввода), а также запись и воспроизведение зрительной информации.
- наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;
- наличие наглядного сопровождения изучаемого материала (структурно-логические схемы, таблицы, графики, концентрирующие и обобщающие информацию, опорные конспекты, раздаточный материал);
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- обеспечение практики опережающего чтения, когда студенты заранее знакомятся с материалом и выделяют незнакомые и непонятные слова и фрагменты;
- особый речевой режим работы (отказ от длинных фраз и сложных предложений, хорошая артикуляция; четкость изложения, отсутствие лишних слов; повторение фраз без изменения слов и порядка их следования; обеспечение зрительного контакта во время говорения и чуть более медленного темпа речи, использование естественных жестов и мимики);
- чёткое соблюдение алгоритма занятия и заданий для самостоятельной работы (называние темы, постановка цели, сообщение и запись плана, выделение основных понятий и методов их изучения, указание видов деятельности студентов и способов проверки усвоения материала, словарная работа);
- соблюдение требований к предъявляемым учебным текстам (разбивка текста на части; выделение опорных смысловых пунктов; исполь-

зование наглядных средств);

- минимизация внешних шумов;
- предоставление возможности соотносить вербальный и графический материал; комплексное использование письменных и устных средств коммуникации при работе в группе;
 - сочетание на занятиях всех видов речевой деятельности (говорения,
 слушания, чтения, письма, зрительного восприятия с лица говорящего).

Студенты с прочими видами нарушений (ДЦП с нарушениями речи, заболевания эндокринной, центральной нервной и сердечно-сосудистой систем, онкологические заболевания)

- наличие возможности использовать индивидуальные устройства и средства, позволяющие осуществлять приём и передачу информации;
- наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;
 - наличие наглядного сопровождения изучаемого материала;
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- обеспечение практики опережающего чтения, когда студенты заранее знакомятся с материалом и выделяют незнакомые и непонятные слова и фрагменты;
- предоставление возможности соотносить вербальный и графический материал; комплексное использование письменных и устных средств коммуникации при работе в группе;
- сочетание на занятиях всех видов речевой деятельности (говорения, слушания, чтения, письма, зрительного восприятия с лица говорящего);
- предоставление образовательного контента в текстовом электронном формате;
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее подготовленном тексте).
- применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы,
- стимулирование выработки у студентов навыков самоорганизации и самоконтроля;
- наличие пауз для отдыха и смены видов деятельности по ходу занятия.