МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ И. Т. ТРУБИЛИНА»

ФАКУЛЬТЕТ АГРОНОМИИ И ЭКОЛОГИИ

УТВЕРЖДАЮ

Декан факультета агрономии и экологии, к.с.-х.н., доцент

Dendrun

А. А. Макаренко

Рабочая программа дисциплины

Инструментальные методы анализа в мониторинге объектов окружающей среды

(Адаптированная рабочая программа для лиц с ограниченными возможностями здоровья и инвалидов, обучающихся по адаптированным основным профессиональным образовательным программам высшего образования)

Направление подготовки 05.03.06 Экология и природопользование

Направленность «Экология и природопользование»

Уровень высшего образования Академический бакалавриат

> Форма обучения очная

> > Краснодар 2022

Рабочая программа дисциплины «Инструментальные методы анализа в мониторинге объектов окружающей среды» разработана на основе ФГОС ВО по направлению подготовки 05.03.06 Экология и природопользование, утвержденного приказом Министерства образования и науки РФ № 998 от 11.08.2016 г. (в ред. Приказа Минобрнауки России от 13.07.2017 г., № 653).

Автор:

Заведующий кафедорой химии, д.х.н., профессор

в. А. Кайгородова

Рабочая программа обсуждена и рекомендована к утверждению решением кафедры химии от 23.03.2022 г., протокол № 7/3.

Заведующий кафедрой, д.х.н., профессор

в Умея Е. А. Кайгородова

Рабочая программа одобрена на заседании методической комиссии факультета агрономии и экологии, протокол от 11.05.2022 г., протокол № 8.

Председатель методической комиссии, ст. преподаватель кафедры общего и орошаемого земледелия

Руководитель основной профессиональной образовательной программы, к.б.н., профессор

Н. В. Чернышева

1 Цель и задачи освоения дисциплины

Целью освоения дисциплины «Инструментальные методы анализа в мониторинге объектов окружающей среды» является формирование комплекса знаний о принципах и возможностях современных инструментальных методов исследования почвы, воздуха, продуктов питания, водных ресурсов и других объектов агроэкосистемы.

Задачи дисциплины

- владение базовыми знаниями фундаментальных разделов физики, химии и биологии в объеме, необходимом для освоения физических, химических и биологических основ в экологии и природопользовании; методами химического анализа, знаниями о современных динамических процессах в природе и техносфере, о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки современными методами количественной обработки информации;
- владение методами отбора проб и проведения химико-аналитического анализа вредных выбросов в окружающую среду, геохимических исследований, обработки, анализа и синтеза производственной, полевой и лабораторной экологической информации, методами составления экологических и техногенных карт, сбора, обработки, систематизации, анализа информации, формирования баз данных загрязнения окружающей среды, методами оценки воздействия на окружающую среду, выявлять источники, виды и масштабы техногенного воздействия.

2 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения АОПОП ВО

В результате освоения дисциплины формируются следующие компетенции:

- ОПК-2 Владение базовыми знаниями фундаментальных разделов физики, химии и биологии в объеме, необходимом для освоения физических, химических и биологических основ в экологии и природопользовании; методами химического анализа, знаниями о современных динамических процессах в природе и техносфере, о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки современными методами количественной обработки информации;
- ПК-2 Владение методами отбора проб и проведения химико-аналитического анализа вредных выбросов в окружающую среду, геохимических исследований, обработки, анализа и синтеза производственной, полевой и лабораторной экологической информации, методами составления экологических и техногенных карт, сбора, обработки, систематизации, анализа информации, формирования баз данных загрязнения окружающей среды, методами оценки воздействия на окружающую среду, выявлять источники, виды и масштабы техногенного воздействия.

3 Место дисциплины в структуре АОПОП ВО

Дисциплина «Инструментальные методы анализа в мониторинге объектов окружающей среды» является дисциплиной вариативной части АОПОП ВО подготовки обучающихся по направлению 05.03.06 Экология и природопользование, направленность «Экология и природопользование».

4 Объем дисциплины (72 часа, 2 зачетных единицы)

D	Объем, часов				
Виды учебной работы	Очная	Заочная			
Контактная работа	43	_			
в том числе:					
– аудиторная по видам учебных занятий	42	_			
– лекции	14	_			
практические		_			
– лабораторные	28	_			
внеаудиторная		_			
– зачет	1	_			
– экзамен	_	_			
– защита курсовых ра- бот (проектов)	-	_			
Самостоятельная работа в том числе:	29	_			
– курсовая работа (проект)*	_	_			
прочие виды самостоя- тельной работы	29	_			
Итого по дисциплине	72				
В том числе в форме практической подготовки	-	-			

5 Содержание дисциплины

По итогам изучаемой дисциплины студенты (обучающиеся) сдают зачет. Дисциплина изучается на 3 курсе, в 5 семестре.

Содержание и структура дисциплины по очной форме обучения

		Виды учебной работы, включая самостоятельную работу студентов и тру- доемкость(в часах)								
N п / п	Тема. Основные вопросы	Формируемые компетенции	Семестр	лекции	в том числе в форме практи- ческой подготовки	лабораторные занятия	в том числе в форме практи- ческой подготовки	практические занятия	в том числе в форме практи- ческой подготовки	самостоятельная работа
1	Классификация инструмен- тальных методов анализа, их роль в экологии и природо-	ОПК-2 ПК-2	5	2	-	2	-	-	-	4
	пользовании.									

		ии		сам	остояте	льную	ой рабо работу сость(в ч	студе		гру-	
М п / п	Тема. Основные вопросы	Формируемые компетенции	Формируемые компете	Семестр	лекции	в том числе в форме практи- ческой подготовки	лабораторные занятия	в том числе в форме практи- ческой подготовки	практические занятия	в том числе в форме практи- ческой подготовки	самостоятельная работа
	Требования различных физико-										
	химических методов к пробо- подготовке, химическим фор-										
	мам и матрице. Способы разло-										
	жения пробы, процессы, исполь-										
	зуемые для разделения и концен-										
	трирования компонентов пробы.										
	Понятие об аналитическом сиг-										
	нале в физико-химических ме-										
	тодах анализа. Особенности										
	аналитических сигналов в спек-										
	тральных, электрохимических и										
	хроматографических методах. Спектральные методы ана-										
	лиза.										
	Структура атомных и молеку-										
	лярных спектров										
	Молекулярно-абсорбционный										
	спектральный анализ. Спек-										
	тральные приборы и характе-										
	ристики их основных узлов.										
	Нефелометрия и турбодимет-										
2	рия Атомно-эмиссионный спек-	ОПК-2	5	4	_	8	_	_	_	9	
	Атомно-эмиссионный спек- тральный анализ. Принцип ме-	ПК-2	3	_		O					
	тода, его аналитические характе-										
	ристики и области применения.										
	Источники возбуждения спек-										
	тров: дуговые и искровые раз-										
	ряды, плазматроны, пламена, ла-										
	зеры. Светофильтры и монохро-										
	маторы. Приемники излучения										
	(детекторы).										

		ии		сам	остояте.	тьную	ой рабо работу сость(в ч	студе		гру-
М п / п	Тема. Основные вопросы	Формируемые компетенции	Семестр	лекции	в том числе в форме практи- ческой подготовки	лабораторные занятия	в том числе в форме практи- ческой подготовки	практические занятия	в том числе в форме практи- ческой подготовки	самостоятельная работа
3	Электрохимические методы анализа и их классификация. Электрохимическая ячейка и ее электрический эквивалент. Индикаторный электрод и электрод сравнения. Потенциометрический анализ. Кондуктометрическое титрование. Кулонометрическое титрование. Вольтамперометрические методы анализа Инверсионная вольтамперометрия. Амперометрическое титрование. Аппаратурная составляющая методов. Применение вольтамперометрии для анализа объектов окружающей среды.	ОПК-2 ПК-2	5	6	ı	16				13
7	Хроматографические ме- тоды анализа, их классифи- кация. Способы получения хроматограмм. Хроматографи- ческие параметры. Теория хроматографического разделе- ния. Практические методы хроматографии.	ОПК-2 ПК-2	5	2	-	2	-	-	-	3
1	Итого			14		28	-	_	-	29

6 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Методические указания (для самостоятельной работы)

1. Наумова Γ . М. Техника ведения химического эксперимента в лаборатории / Γ . М. Наумова, Е. К. Яблонская, Е. А. Кайгородова. Краснодар: Куб Γ AУ, 2012. — 80 с. https://edu.kubsau.ru/file.php/105/03_03.07.13/08_tekhnika_vedenija_khimicheskogo_ehksperimenta.pdf

- 2. Гайдукова Н. Г. Тестовые задания по дисциплине «Инструментальные методы исследования почв и растений» для самостоятельной работы: учеб. пособие. / Н. Г. Гайдукова, И. В. Шабанова. Краснодар: КубГАУ, 2012. 92 с. https://edu.kubsau.ru/file.php/105/03_03.07.13/12_Testovye_zadanija_po_discipline_Instrumentalnye_metody_issledovan-ija_pochv_i_rastenii-GaidukovaNG.SHabanovaIV.pdf
- 3. Инструментальные методы анализа в агрономии : учеб. пособие / Е. А. Кайгородова, Н. Е. Косянок, С. А. Пестунова. Краснодар : КубГАУ, 2018. 204 с. https://edu.kubsau.ru/file.php/105/Instrumentalnye_metody_analiza_v_agronomii.pdf
- 4. Гайдукова Н. Г. Инструментальные методы исследования в агроэкологии. ч. 1. Электрохимические методы: учеб. пособие / Н. Г. Гайдукова, И. В. Шабанова; под общей ред. Н. Г. Гайдуковой. Краснодар: КубГАУ, 2018. 99 с. https://edu.kubsau.ru/file.php/105/Instrumentalnye_metody_414003_v1_.PDF

7 Фонд оценочных средств для проведения промежуточной аттестации

7.1 Перечень компетенций с указанием этапов их формирования в процессе освоения АОПОП ВО

Этапы формирования и проверка уровня сформировано-

TT 4.	этаны формирования и проверка уровня сформировано						
Номер семестра*	сти компетенций по дисциплинам, практикам в процессе						
	освоения АОПОП ВО						
ОПК-2 — Владение ба	ОПК-2 — Владение базовыми знаниями фундаментальных разделов физики, хи-						
1	бходимом для освоения физических, химических и биоло-						
	природопользовании; методами химического анализа, зна-						
<u> </u>	ческих процессах в природе и техносфере, о состоянии гео-						
	оции биосферы, глобальных экологических проблемах, ме-						
<u> </u>	огических и биологических проб, а также навыками иден-						
тификации и описания биоло	гического разнообразия, его оценки современными мето-						
дами количественной обработ	ки информации						
1	Б1.Б.10 Неорганическая химия						
1	Б1.Б.11 Биология						
1	Б1.В.01 Биоразнообразие						
2	Б1.Б.09 Физика						
2	Б1.Б.27 Органическая химия						
2,4	Б2.В.01.01 Практика по получению первичных професси-						
	ональных умений и навыков, в том числе первичных						
	умений и навыков научно-исследовательской деятельно-						
	сти						
2-3	Б1.Б.13 Общая экология						
3	Б1.Б.26 Физическая и коллоидная химия						
4	Б1.Б.19 Учение о биосфере						
4	Б1.В.11 Экологическая генетика						
4	Б1.Б.16 Охрана окружающей среды						
	Б1.Б.22 Устойчивое развитие						
5	Б1.В.ДВ.05.01 Физико-химические методы анализа						
5	Б1.В.ДВ.05.02 Инструментальные методы анализа в мо-						
	ниторинге объектов окружающей среды						
5	Б1.Б.14 Геоэкология						
5	Б1.Б.32 Физиология растений						
7	Б1.Б.23 Экологический мониторинг						
7	Б1.В.10 Эволюционная экология						
7	Б1.В.16 Методы экологических исследований						
/	DI.D. 10 MICTORDI OKONOTH ICCKHA HCCHCHOBAITHH						

Номер семестра*	сти компетенций по дисциплинам, практикам в процессе
	освоения АОПОП ВО
8	Б3.Б.01 Защита выпускной квалификационной работы,
	включая подготовку к защите и процедуру защиты
ПК-2 — Владение методами	отбора проб и проведения химико-аналитического анализа
вредных выбросов в окружаю	щую среду, геохимических исследований, обработки, ана-
лиза и синтеза производствени	ной, полевой и лабораторной экологической информации,
методами составления эколог	ических и техногенных карт, сбора, обработки, системати-
зации, анализа информации, ф	оормирования баз данных загрязнения окружающей среды,
методами оценки воздействия	на окружающую среду, выявлять источники, виды и мас-
штабы техногенного воздейст	ВИЯ
1	Б1.В.04 Экологическое картографирование
2	Б1.В.ДВ.03.01 Аналитическая химия
2	Б1.В.ДВ.03.02 Аналитический контроль объектов окру-
	жающей среды
2,4	Б2.В.01.01 Практика по получению первичных професси-
	ональных умений и навыков, в том числе первичных
	I

4-5

5

5

5

6

6

2,6

8

8

Этапы формирования и проверка уровня сформировано-

умений и навыков научно-исследовательской деятельно-

Б1.Б.08 ГИС в экологии и природопользовании

ниторинге объектов окружающей среды

Б2.В.02.02 Преддипломная практика

Б1.В.21 Оценка воздействия на окружающую среду

Б1.В.ДВ.05.01 Физико-химические методы анализа

Б1.В.ДВ.05.02 Инструментальные методы анализа в мо-

Б1.В.ДВ.02.01 Техногенные системы и экологический

Б1.В.ДВ.02.01 Техногенные системы урбанистических

Б2.В.02.01 Практика по получению профессиональных

Б3.Б.01 Защита выпускной квалификационной работы, включая подготовку к защите и процедуру защиты

умений и опыта профессиональной деятельности

7.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалы оценивания

риск

территорий

Планируемые результаты освоения компетенции	неудовле- творительно (минималь- ный не до- стигнут)	удовлетворительно (минимальный, пороговый)	хорошо (сред- ний)	отлично (вы- сокий)	Оценочное средство

ОПК-2 — Владение базовыми знаниями фундаментальных разделов физики, химии и биологии в объеме, необходимом для освоения физических, химических и биологических основ в экологии и природопользовании; методами химического анализа, знаниями о современных динамических процессах в природе и техносфере, о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки современными методами количественной обработки информации

ЗНАТЬ: основные причины изменения физико-химических свойств материалов, изделий и веществ; морфологиче-	Уровень знаний ниже минимальных требований, имели место грубые ошибки	Мини- мально до- пустимый уровень знаний, до- пущено много не- грубых ошибок	Уровень знаний в объеме, соответствующем программе подготовки, допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующем программе подготовки, без ошибок	Реферат (доклад) Тестовые задания Расчетные задачи Контрольная работа. Вопросы и
ский состав твердых бытовых (коммунальных) отходов					задания для прове- дения за- чета.
УМЕТЬ: производить лабораторные исследования, замеры, анализы отобранных природных образцов	При решении стандартных задач не продемонстрированы основные умения, имели место грубые ошибки	Продемон- стриро- ваны ос- новные умения, ре- шены типо- вые задачи с негру- быми ошибками, выполнены все зада- ния, но не в полном объеме	Продемон- стрированы все основные умения, ре- шены все ос- новные задачи с негрубыми ошибками, выполнены все задания в полном объ- еме, но неко- торые с недо- четами	Продемон- стрированы все основ- ные умения, решены все основные за- дачи с от- дельными несуще- ственными недочетами, выполнены все задания в полном объ- еме	
ВЛАДЕТЬ: навыками подготовки документа- щии, содержащей све- дения о состоянии окружающей среды, местах отбора проб, методиках	При решении стандартных задач не продемонстрированы базовые навыки, имели место грубые ошибки	Имеется минимальный набор навыков для решения стандартных задач с некоторыми недочетами	Продемон- стрированы базовые навыки при решении стан- дартных задач с некоторыми недочетами	Продемон- стрированы навыки при решении не- стандартных задач без ошибок и недочетов	

(методах)			
измерений			

ПК-2 — Владение методами отбора проб и проведения химико-аналитического анализа вредных выбросов в окружающую среду, геохимических исследований, обработки, анализа и синтеза производственной, полевой и лабораторной экологической информации, методами составления экологических и техногенных карт, сбора, обработки, систематизации, анализа информации, формирования баз данных загрязнения окружающей среды, методами оценки воздействия на окружающую среду, выявлять источники, виды и масштабы техногенного воздействия

DIIATI.	V	M	V	V	Dadanas
ЗНАТЬ:	Уровень зна-	Мини-	Уровень зна-	Уровень зна-	Реферат
основные	ний ниже	мально до-	ний в объеме,	ний в объ-	Тестовые
причины из-	минималь-	пустимый	соответствую-	еме, соответ-	задания
менения фи-	ных требова-	уровень	щем про-	ствующем	Расчетные
зико-хи-ми-	ний, имели	знаний, до-	грамме подго-	программе	задачи
ческих	место гру-	пущено	товки, допу-	подготовки,	Контроль-
свойств мате-	бые ошибки	много не-	щено не-	без ошибок	ная работа
риалов, изде-		грубых	сколько не-		Вопросы
лий и ве-		ошибок	грубых оши-		и задания
ществ			бок		для прове-
УМЕТЬ:	При реше-	Продемон-	Продемон-	Продемон-	дения
производить	нии стан-	стриро-	стрированы	стрированы	зачета
лабораторные	дартных за-	ваны ос-	все основные	все основ-	
исследова-	дач не про-	новные	умения, ре-	ные умения,	
ния, замеры,	демонстри-	умения, ре-	шены все ос-	решены все	
анализы ото-	рованы ос-	шены типо-	новные задачи	основные за-	
бранных при-	новные уме-	вые задачи	с негрубыми	дачи с от-	
родных об-	ния, имели	с негру-	ошибками,	дельными	
разцов	место гру-	быми	выполнены	несуще-	
	бые ошибки	ошибками,	все задания в	ственными	
		выполнены	полном объ-	недочетами,	
		все зада-	еме, но неко-	выполнены	
		ния, но не в	торые с недо-	все задания в	
		полном	четами	полном объ-	
		объеме		еме	
ВЛАДЕТЬ:	При реше-	Имеется	Продемон-	Продемон-	
навыками	нии стан-	минималь-	стрированы	стрированы	
проведения	дартных за-	ный набор	базовые	навыки при	
экологиче-	дач не про-	навыков	навыки при	решении не-	
ского анализа	демонстри-	для реше-	решении стан-	стандартных	
подготовки	рованы базо-	ния стан-	дартных задач	задач без	
производства	вые навыки,	дартных за-	с некоторыми	ошибок и	
к выпуску но-	имели место	дач с неко-	недочетами	недочетов	
вой продук-	грубые	торыми			
ции	ошибки	недочетами			

7.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, характеризующих этапы формирования компетенций в процессе освоения АОПОП ВО

7.3.1. Темы рефератов (докладов)

- 1. Обработка результатов экспериментальных инструментальных исследований
- 2. Выбор метода анализа, схемы и методики применительно к объекту анализа. Критерии выбора, правила отбора проб.
- 3. Хемометрика и планирование эксперимента.
- 4. Типы реакций и органические реагенты в абсорбционной спектрофотомерии.
- 5. Спектрофотометрическое титрование.
- 6. Влияние различных факторов на точность пламенно фотометрических измерений.
- 7. Флуориметрия экспрессный метод определения качества сельскохозяйственной продукции
- 8. Электрохимические методы исследований в экологии и природопользовании, требования к ним
- 9. Кондуктометрический метод определения влажности почв и общей солености почвенных вод
- 10. Кулонометрический анализ и его применения в экологическом мониторинге
- 11. Амперометрическое титрование в сельскохозяйственном анализе
- 12. Полярографические методы исследований в в экологическом мониторинге
- 13. Хроматографические методы исследований в анализе пищевых продуктов
- 14. Ионная хроматография в анализе объектов окружающей среды
- 15 Высокоэффективная жидкостная хроматография и ее применение в анализе растительных проб на содержание органических соединений
- 16. Гибридные методы анализа в агроэкологическом мониторинге
- 17. Инновационные методы исследований в агроэкологии
- 18. Автоматизация в агрохимическом анализе
- 19. Применение методов ФХМА в криминалистической экспертизе.
- 20. Применение ФХМА при расследовании экологических преступлений
- 21. Инфракрасная спектроскопия в анализе сельскохозяйственной продукции
- 22. Рентгенофазовый и рентгеноструктурный анализ в агроэкологии
- 23. Рентгено-флуоресцентный анализ в анализе биологических объектов
- 24. Инфракрасная спектрометрия в анализе биологических объектов
- 25. ЯМР спектроскопия в расшифровке структуры сложных органических веществ.

7.3.2 Задания для контрольных работ

Контрольная работа №1

«Спектральные методы анализа»

1. Марганец в почве определяют извлекая его подвижные формы ацетатно-аммиачным буфером рН 4,8 и последующим фотометрическим определением с ПАН (1-(2-пиридилазо)-2-нафтолом (ГОСТ Р 50683) в виде комплекса желтого цвета. Для построения калибровочной кривой были определены оптические плотности следующих растворов:

С(Мп),моль/л	$0.5 \cdot 10^{-5}$	1.10^{-5}	$1,5 \cdot 10^{-5}$	$2,0\cdot 10^{-5}$
D	0.075	0.152	0.229	0.299

Построить калибровочный график и вычислить содержание Мп в 100 мл почвенной вытяжки, если оптическая плотность равна 0,179.

2. Определите, при каких длинах волн целесообразнее измерять оптическую плотность, при определении содержания Mn(VII) в почве фотометрическим методом, если исследуют раствор красно-фиолетового цвета.

3. При измерении интенсивности люминесценции растворов получены данные (раствор соли Al^{3+}):

$C(Al^{3+})$, мкг/ 10 мл	X	x + 0.03	x + 0.05
І, мкА	10	16	20

Найти концентрацию алюминия в растворе.

Контрольная работа № 2

«Электрохимические методы анализа»

1. Фторид-ионы содержатся в питьевой воде, представляя опасность для человека. Для определения фторид-ионов методом калибровочного графика приготовили серию стандартных растворов и измерили потенциалы фторид-селективного электрода относительно хлорсеребряного электрода сравнения.

> $1 \cdot 10^{-5}$ $1 \cdot \overline{10^{-4}}$ $1 \cdot \overline{10^{-2}}$ $c(F^-)$, моль/л 1.10^{-3} 1.10^{-1} 330 Е. мВ 275 225 170 120

Используя полученные данные построить калибровочный график (E,мB = f(pF)) и по нему определите содержание фторид-ионов (мг/л) в исследуемом растворе, если потенциал исследуемого раствора 187 мВ.

- 2. Какие электроды используют для определения окислительно-восстановительного потенциала почвенной вытяжки? Составьте схему гальванической цепи, укажите реактивы, оборудование и этапы работы.
- 3.. Рассчитайте концентрацию раствора НСІ, если при кондуктометрическом титровании 50 мл этого раствора 0,01н раствором NaOH были получены следующие данные:

V _т , мл	0	2	4	6	8	10
R, Om	664	915	1490	1580	1010	740

Контрольная работа №3

«Хроматографические методы анализа»

- 1. Опишите методику подготовки анионита АВ-17 к работе. Что такое солевая форма ионита? Как перевести анионит в хлоридную форму?
- 2. При разделении ртути, кадмия и меди на целлюлозе коэффициенты движения оказались следующими:

$$R_f(Hg) = 1,00$$
 $R_f(Cd) = 0,82$ $R_f(Cu) = 0,92$.

Найти пути движения каждого иона, если фронт элюента 15 см. Изобразите хроматограмму, указав на ней положение каждого иона.

3. Какой газ-носитель наиболее широко применяется в газовой хроматографии? ясните, почему. Дайте сравнительную характеристику используемых газов-носителей.

7.3.3 Тестовые задания

Вариант тестового задания, охватывающего весь курс приведен ниже.

1. Среднее значение измеряемой величины определяется по формуле:

a)
$$S_i = \frac{\sqrt{\pm \Sigma (x_i - x)^2}}{n};$$

6) $X = \frac{\Sigma x_i}{n};$
B) $S_x = \frac{Si}{\sqrt{n}}.$

B)
$$S_x = \frac{St}{\sqrt{n}}$$
.

2. Отклонение от среднего арифметического (абсолютная ошибка) определяется по формуле:

a)
$$d_i = x_i - x$$
;

$$δ$$
) $X = Σx_i$;

B)
$$S_x = \frac{S_i}{\sqrt{n}}$$
.

- 3. Среднее отклонение определяется по формуле:

 - $6) d_{cp} = \pm \frac{\sum (x_i x)}{n};$
 - B) $d_{cp} = \pm \frac{\sum_{i} (x_i x_i)}{x}$.
 - 4. Средняя квадратичная ошибка измерения определяется по формуле:
 - a) $d_{cp} = \pm \frac{\sum (x_i x)}{n}$;
 - б) $d_i = x_i$ -х
 - B) $S_i = \frac{\sqrt{\pm \Sigma (x_i x)^2}}{n}$.
 - 5. Дисперсия средней квадратичной определяется по формуле:
 - a) $S_x = \frac{S_i}{\sqrt{n}}$;
 - б) $S_x = S_i$; в) $d_{cp} = \pm \frac{\sum (x_i x)}{n}$. 6. Грубое отклонение определяется по формуле:
 - a) $d_i = x_i x$;
 - б) $d_{cpm}>3S_x$;
 - B) $d_{cp} = \pm \frac{\sum (x_i x)}{n}$.
 - 7. Вероятная относительная погрешность определяется по формуле:
 - 8. Методы анализа, в которых используют реакции нейтрализации, окислительно-восстановительные, комплексообразования называются:
 - а) физическими;
 - б) инструментальными;
 - в) химическими
 - 9. Методы анализа, основанные на идентификации эмиссионных или абсорбционных спектров исследуемого вещества называются:
 - а) спектральными;
 - б) электрохимическими;
 - в) хроматографическими
 - 10. Методы анализа, основанные на регистрации электрохимических параметров определяемого вещества называются:
 - а) спектральными;
 - б) электрохимическими;
 - в) хроматографическими
 - 11. В основе потенциометрического метода анализа лежит:
 - а) регистрация электродного потенциала или напряжения в цепи;
 - б) регистрация количества электричества, израсходованного при выделении вещества в процессе электролиза;
 - в) регистрация удельной электрической проводимости или сопротивления
 - 12. Метод, основанный на определении содержания вещества в анализируемой пробе по величине ее электрической проводимости называется:
 - а) кулонометрическим;
 - б) кондуктометрическим;
 - в) спектральным
 - 13. Метод, в основе которого лежит измерение потенциала электрода, погруженного в анализируемый раствор, называется:
 - а) кондуктометрическим;
 - б) кулонометрическим;
 - в) потенциометрическим

- 14. Метод, изучающий зависимость силы диффузионного тока от налагаемого на электрохимическую ячейку внешнего напряжения при проведении процесса электролиза, называется:
- а) вольтамперометрическим методом;
- б) полярографическим методом;
- в) спектральным методом
- 15. Величина, равная отношению изменения аналитического сигнала к изменению концентрации определяемого компонента называется:
- а) коэффициентом преломления;
- б) коэффициентом погрешности;
- в) коэффициентом чувствительности
- 16. Минимальное содержание определяемого компонента в анализируемой пробе, которое может быть обнаружено данным методом с заданной вероятностью характеризуется:
- а) концентрацией вещества;
- б) пределом обнаружения;
 - в) коэффициентом чувствительности
- 17. Для измерения редокс-потенциала в качестве индикаторного используется электрод:
- 1) алюминиевый;
- 2) водородный;
- 3) платиновый;
- 4) железный.
- 18. Стеклянный электрод, длительное время выдержанный в воде, обладает водородной функцией и используется для измерения рН без дополнительной обработки в средах:
- 1) нейтральных;
- 2) сильнокислых;
- 3) сильнощелочных;
- 4) нет верного ответа.
- 19 Перед проведением измерений стеклянный электрод калибруют по ... растворам.
- 20. Перед эксплуатацией индикаторный шарик стеклянного электрода вымачивают в:
- 1) 0,1н растворе соляной кислоты;
- 2) 0,1н растворе щелочи;
- 3) разбавленном растворехлорида натрия;
- 4) концентрированном растворе хлорида натрия.
- 21. Потенциометрический анализ не используется в агрохимии и почвоведении для определения:
- 1) общей кислотности почвенных растворов;
- 2) нитрат-ионов в почвенной вытяжке;
- 3) содержания ионов кальция;
- 4) содержания ионов аммония, калия.
- 22. Растворы со значениями рН, равными:
 - 1. 1.68; 2. 4.01; 3. 6.86; 4. 9.18; называются ...
- 23. Потенциал платинового электрода зависит от:
- 1) концентрации ионов водорода;
- 2) соотношения концентрации окисленной и восстановленной форм определяемого вещества;
- 3) концентрации окисленной формы вещества;
- 4) концентрации восстановленной формы вещества.
- 24. Методами кондуктометрии можно анализировать только вещества, являющиеся:
 - 1) диэлектриками;
 - 2) электролитами;
 - 3) высоко-молекулярными;

- 4) коллоидами.
- 25. В ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют при:
 - 1) кондуктометрии;
 - 2) прямой кондуктометрии;
 - 3) кондуктометрическом титровании;
 - 4) потенциометрии.
- 43. В методе кондуктометрического титрования не используют реакцию:
- 1)изотопного обмена;
- 2)нейтрализации;
- 3)осаждения;
- 4) комплексообразования.
- 26. Сущность кондуктометрического метода анализа зависит от
 - а) различной способности вещества к сорбции;
 - б) принципа измерения электропроводности;
 - в) измерения угла вращения
- 27. Прямая кондуктометрия основана на
- а) непосредственном измерении электропроводности исследуемого раствора;
- б) определении содержания вещества по времени титрования;
- в) измерении угла вращения плоскости поляризованного света
- 28. Точка эквивалентности при кондуктометрическом титровании определяется:
- а) по резкому изменению электропроводности и сопротивления в растворе;
- б) по изменению содержания вещества в растворе;
- в) по резкому изменению сопротивления в растворе
- 29. Удельная электропроводность обозначается:
- a) C
- б) λ
- **B**) χ
- 30. Единица измерения удельной электропроводности:
- a) Γ / cm^3 ;
- б) кВт;
- в) См (сименс)
- 31. Вольтамперометрический метод анализа основан на:
- 1) измерении количества электричества;
- 2) гидролизе;
- 3) использовании явления поляризации микроэлектрода, получении и интерпретации поляризационных кривых;
- 4) измерении электрической проводимости растворов.
- 31. Преимущество спектрофотометрии перед фотоколориметрией состоит:
- 1) в спектрофотометрии не требуется строгое соблюдение постоянства рНанализируемого раствора;
- 2) спектрофотометрия обеспечивает более высокую чувствительность и точность определений;
- 3) в спектрофотометрии не требуется избыток добавляемого реагента;
- 4) в спектрофотометрии не требуется количественного перевода определяемого компонента в светопоглощающее соединение.
- 32. Фотометрические методы анализа основаны:
- 1) на избирательном поглощении света растворами анализируемых соединений;
- 2) на отражении света растворами анализируемых соединений;
- 3) на свечении, вызванным переходом электрона в возбужденное состояние;
- 4) на излучении атомов, содержащихся в анализируемом образце.

- 33. Молярный показатель поглощения не зависит:
- 1) от природы вещества;
- 2) от длины волны поглощаемого света;
- 3) от концентрации раствора поглощающего свет соединения;
- 4) от степени монохроматичности поглощаемого света.
- 34. Спектрофотометрический метод анализа от фотоколориметрического метода отличается:
- 1) спектрофотометрический анализ основан на поглощении поли-хроматичского света;
- 2) спектрофотометрический анализ основан на поглощениимоно-хроматического света;
- 3) ничем;
- 4) в спектрофотометрическом анализе обходятся без использования светофильтра или монохроматора.
- 35. Спектры поглощения это:
- 1) графическое изображение поглощаемой световой энергии по длинам волн;
- 2) графическое изображение распределения излучаемой световой энергии по динам волн;
- 3) графическое изображение распределения концентрации определяемого вещества по длинам волн;
- 4) графическое изображение распределения толщины светопоглощающего раствора по длинам волн.
- 36. Интенсивность полосы поглощения, характеризуемая значением є, зависит от:
- 1) времени пребывания частицы в возбужденном состоянии;
- 2) числа поглощающих частиц;
- 3) вероятности перехода валентного электрона из основного в возбужденное состояние;
- 4) заселенности уровня электронами, исходного для этого перехода;
- 37. Размерность молярного коэффициента поглощения:
- 1) л моль см
- 2) л⁻¹ моль⁻¹ см
- 3) л моль⁻¹ см⁻¹
- 4) л моль см⁻¹
- 38. Метод добавок используют:
- 1) для устранения мешающего влияния посторонних примесей;
- 2) для определения высоких концентраций;
- 3) в случае несоблюдения основного закона светопоглощения;
- 4) для определения низких концентраций.
- 39. Монохроматором (анализатором частоты) в приборах, используемых в спектрофотометрии, могут служить:
- 1) фотоэлемент;
- 2) инза:
- 3) светофильтр;
- 4) призма.
- 40. Монохроматором (анализатором частоты) в фотометре КФК-2 служит:
 - 1) фотоэлемент;
 - 2) линза;
 - 3) светофильтр;
 - 4) дифракционная решетка.
- 41. При соблюдении основного закона светопоглощения значение тангенса угла наклона прямой D от c зависит от:
- 1) диапазона концентраций;
- 2) значения молярного показателя поглощения;
- 3) толщины поглощающего слоя;
- 4) не зависит от перечисленных факторов.
- 42. Фотоэлемент это устройство, которое:

- 1) рассеивает световой поток;
- 2) преобразует световой поток;
- 3) отражает световой поток;
- 4) поглощает световой поток.
- 43. Молекулы вещества в конденсированном состоянии имеют:
 - 1) спектр с широкой полосой;
 - 2) линейчатый спектр;
 - 3) спектр с тонкой структурой на основной полосе;
 - 4) сплошной спектр.
- 44. Эмиссионный спектр атома представляет собой:
- 1) набор узких линий;
- 2) набор широких полос;
- 3) комбинацию узких полос и широких линий;
- 4) непрерывную кривую с максимумами.
- 45. Аналитическим сигналом при проведении качественного атомно эмиссионного анализа является:
- 1) длины волн спектральных линий;
- 2) интенсивность спектральных линий;
- 3) ширина спектральных линий;
- 4) расстояние между спектральными линиями.
- 46. Эмиссионный спектр атомов какого элемента содержит большее число линий:
- 1) лития;
- 2) натрия;
- 3) стронция;
- 4) железа.
- 47. Нагрев анализируемого образца до высокой температуры в методе атомно-эмиссионной спектроскопии используется:
- 1) только для его атомизации;
- 2) только для ионизации атомов;
- 3) только для возбуждения атомов;
- 4) для атомизации с последующей ионизацией атомов.
- 48. Аналитическим сигналом при проведении качественного атомно абсорбционного анализа является:
- 1) длины волн спектральных линий;
- 2) интенсивность спектральных линий;
- 3) ширина спектральных линий;
- 4) расстояние между спектральными линиями.
- 49. Спектральную линию, возникающую при испускании, называют
- 50. Аналитическим сигналом при проведении количественного атомно-эмиссионного анализа является:
- 1) длины волн спектральных линий;
- 2) интенсивность спектральных линий;
- 3) ширина спектральных линий;
- 4) расстояние между спектральными линиями.
- 50. В основе количественного анализа методом фотометрии пламени лежит уравнение:
- 1) I = I_o/c ;
- 2) $I = I_0 \cdot c$;
- 3) $I = \alpha \cdot c^b$;
- 4) $I = I_0/g \cdot c$.
- 51 Утверждение, соответствующее первому правилу Уолша:
- 1) излучение источника должно точно соответствовать длине волны аналитической спектральной линии;
- 2) источник излучения должен иметь линейчатый спектр;
- 3) источник излучения должен иметь сплошной спектр;

- 4) ширина спектральной линии источника должна быть вдвое уже ширины линии определяемого элемента.
- 52. Утверждение, соответствующее второму правилу Уолша:
- 1) ширина спектральной линии источника должна быть вдвое уже ширины линии определяемого элемента;
- 2) источник излучения должен иметь линейчатый спектр;
- 3) источник излучения должен иметь сплошной спектр;
- 4) излучение источника должно точно соответствовать длине волны аналитической спектральной линии.
- 53. Метод ААС основан на:
- 1) измерении поглощения резонансного излучения атомами определяемого элемента;
- 2) измерении интенсивности излучения света возбужденными атомами;
- 3) измерении интенсивности излучения света ионизированными атомами;
- 4) измерении интенсивности излучения света ионизированными молекулами.
- 54. Кривая, изображающая зависимость концентрации соединений, выходящих из колонки с потоком подвижной фазы, от времени с момента начала разделения это
- 55. В основе разделения методами адсорбционной хроматографии лежит:
 - 1) адсорбция;
 - 2) абсорбция;
 - 3) сорбция;
 - 4) десорбция.
- 56. Физическая адсорбция от химической отличается...
- 1) высоким тепловым эффектом и необратимостью;
- 2) высоким тепловым эффектом и обратимостью;
 - 3) невысоким тепловым эффектом и необратимостью;
- 4) невысоким тепловым эффектом и обратимостью;
- 57. Различная способность веществ к адсорбции используется в
- 1) полярографии;
- 2) томографии;
- 3) рентгенографии;
- 4) хроматографии
- 58. Вещество, на поверхности которого происходит разделение и концентрирование анализируемых веществ в методе хроматографии, называется:
- 1) сорбат;
- 2) сорбтив;
- 3) сорбент;
 - 4) элюент
- 59. В газожидкостной хроматографии неподвижная и подвижная фаза соответственно:
 - 1) Сорбент газ, элюент-газ;
 - 2) Сорбент газ, элюент-жидкость;
 - 3) Сорбент жидкость, элюент-газ;
 - 4) Сорбент –жидкость, элюент –жидкость;
- 60. Пробу непрерывно добавляют в систему при хроматографии
 - 1) Вытеснительной;
 - 2) Фронтальной;
 - 3) Элюентной;
 - 4) Все варианты

7.3.4. Вопросы и задания для проведения промежуточного контроля (зачета)

Компетенция: Владение базовыми знаниями фундаментальных разделов физики,

химии и биологии в объеме, необходимом для освоения физических, химических и биологических основ в экологии и природопользовании; методами химического анализа, знаниями о современных динамических процессах в природе и техносфере, о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки современными методами количественной обработки информации (ОПК-2).

Вопросы к зачету

- 1. Какие методы анализа используют в контроле загрязнения почв, воды, воздуха? Каковы преимущества инструментальных методов анализа?
- 2. Дать определение понятий: аналитический сигнал, принцип метода.
- 3. Укажите основные метрологические характеристики инструментальных методов анализа.
- 4. Какая существует взаимосвязь между воспроизводимостью и правильностью метода анализа?
- 5. Что такое чувствительность метода, коэффициент регрессии?
- 6. Перечислите основные стадии инструментального анализа. Как они влияют на точность анализа?
- 7. Виды и источники ошибок. Каким образом можно уменьшить случайные ошибки?
- 8. Какие причины вызывают систематические погрешности? Как их можно устранить?
- 9. В чем сущность статистической обработки результатов анализа?
- 10. Что такое среднее квадратичное отклонение единичного результата? Что такое дисперсия средней квадратичной ошибки, какая взаимосвязь ее с грубой ошибкой?
- 11. Перечислите способы расчета относительной погрешности.
- 12. Сущность метода градуировочного графика?
- 13. Классификация электрохимических методов анализа.
- 14. Сущность потенциометрических методов анализа.
- 15. Электродный потенциал, механизм его возникновения, факторы, влияющие на его величину.
- 16. Что такое электрохимическая ячейка, гальваническая цепь? Приведите примеры.
- 17. Виды электродов в зависимости от электродной реакции.
- 18. Какие электроды называют электродами сравнения и индикаторными электродами? Какие требования предъявляют к ним?
- 19. Виды индикаторных электродов, используемых в агрохимических исследованиях, их метрологические характеристики.
- 20. Какие виды измерений различают в потенциометрии? Укажите сущность их и область применения.
- 21. Для каких целей применяют потенциометрический анализ в агроэкологии и почвоведении?
- 22. В чем сущность потенциометрического титрования? Какие индикаторные электроды применяют в потенциометрическом кислотно-основном титровании?
- 23. Методы потенциометрического титрования. Кривые титрования.
- 24. Принципиальные схемы рН-метров, иономеров.
- 25. Понятия и термины полярографии: сущность метода, индикаторный электрод, потенциал разложения, поляризация электрода.
- 26. Полярограмма, ее основные характеристики.
- 27. Виды полярографических методов анализа.
- 28. Инверсионная вольтамперометрия: сущность, вольтамперограмма и ее характеристики.
- 29. Методы определения концентрации веществ в полярографии, инверсионной вольтам-перометрии.

- 30. Принципиальные схемы полярографа, вольтамперометрического анализатора.
- 31. В чем сущность кондуктометрии?
- 32.Классификация кондуктометрических методов анализа.
- 33. На чем основано кондуктометрическое титрование? Перечислите его достоинства и недостатки.
- 34. Виды кривых кондуктометрического титрования.
- 35. Область применения кондуктометрии в агрохимической практике, в почвоведении.
- 36. Основные приборы кондуктометрических методов анализа.

Практические задания для зачета

1. Рассчитать концентрацию раствора HCI, если при титровании 50 мл этого раствора 0,01н раствором NaOH получены данные:

V титранта, мл: 0 2 4 6 8 10 R (Ом): 664 915 1490 1580 1010 740

- 2. Какие электроды необходимо взять для определения концентрации катиона аммония потенциометрическим методом? Составьте гальваническую цепь.
- 3. При определении железа в параллельных пробах были найдены следующие массы Fe_2O_3 (мг): 1,685; 1,694; 1,756; 1,723; 1.727; 1,785. Вычислите среднюю квадратичную ошибку измерений.

4. При калибровке амперметра получены следующие значения:

Масса Си. г	. 0,201	0,4	483	0,819	1,037	1,275
Сила тока, А	A 0,50	1,0	00	1,50	2,00	2,50

Постройте градуировочный график m(Cu) = f(I).

5. При определении железа в параллельных пробах были найдены следующие массы Fe_2O_3 (мг): 1,685; 1,694; 1,756; 1,723; 1.727; 1,785. Вычислите среднюю квадратичную ошибку измерений.

6. При калибровке амперметра получены следующие значения:

Macca Cu. г.	0,201	0,483	0,819	1,037	1,275
Сила тока, А	0,50	1,00	1,50	2,00	2,50

Постройте градуировочный график m(Cu) = f(I).

7. Составьте гальваническую цепь, необходимую для определения концентрации ионов магния. Укажите реактивы, оборудование, этапы работы.

8. При полярографировании исследуемого раствора были получены следующие данные:

E, B: 0.4 0.5 0.6 0.65 0.70 0.75 1.00 1_d , MKA: 0 0 0.5 10 27 35 38

Определите высоту полярографической волны графическим методом.

- 9. Какой индикаторный электрод используют в осадительном титровании при потенциометрическом определении содержания хлорид ионов в воде, его устройство? Укажите реактивы, оборудование, этапы работы.
- 10. Составьте гальваническую цепь для потенциометрического определения рН раствора. Укажите реактивы, оборудование и этапы работы.
- 11. При полярографировании 50 мл исследуемого раствора соли Cd^{2+} высота волны равнялась 30 мм. Затем в раствор добавили 1 мл стандартного раствора с титром Cd^{2+} , равным 10 мг/мл. Высота волны в этом растворе равнялась 55 мл. Найти концентрацию Cd^{2+} в исследуемом растворе соли.
- 12. Какие электроды используют для определения окислительно-восстановительного потенциала почвенной вытяжки? Составьте схему гальванической цепи, укажите реактивы, оборудование и этапы работы.
- 13. Составить гальваническую цепь для ионометрического определения кальция. Указать реактивы, оборудование и этапы работы.

14. При каких агроэкологических анализах применяют вольтамперометрические методы? Рассчитать концентрацию исследуемого раствора цинка по следующим данным: $C_{cm} = 10$ мг/мл,

 $V_{cm}=2$ мл.

 $h_{cm} = 34 \text{ MM}, \quad h_x = 71 \text{ MM}; \quad V_x = 2.5 \text{ MM}.$

15. Стеклянный электрод, его устройство и применение. Почему стеклянный электрод нужно градуировать? В чем заключается процесс градуировки электрода.

Компетенция ПК-2 — Владение методами отбора проб и проведения химико-аналитического анализа вредных выбросов в окружающую среду, геохимических исследований, обработки, анализа и синтеза производственной, полевой и лабораторной экологической информации, методами составления экологических и техногенных карт, сбора, обработки, систематизации, анализа информации, формирования баз данных загрязнения окружающей среды, методами оценки воздействия на окружающую среду, выявлять источники, виды и масштабы техногенного воздействия.

Вопросы к зачету

- 1. Сущность спектроскопии, виды спектров, методы спектрального анализа.
- 2. В чем сущность закона Бугера Ламберта Бера? Каково его математическое выражение?
- 3. Молекулярные спектры поглощения, их происхождение.
- 4. В чем отличие спектрофотометрии от фотоэлектроколориметрии? Метрологические характеристики этих методов.
- 6. Внутренняя оптическая плотность (D), факторы, влияющие на её величину.
- 7. Внутреннее пропускание (Т), молярный показатель поглощения, удельный показатель поглощения. Какие факторы влияют на их величину?
- 8. Закон аддитивности в фотоколориметрии. Какие факторы вызывают отклонение от законов светопоглощения?
- 9. Методы определения концентрации веществ в видимой и УФ областях спектра молекулярно-абсорбционной спектроскопии.
- 10. Сущность дифференциальной спектрофотометрии. Преимущества метода.
- 11 .Назначение светофильтров в фотоколориметрии. Как влияет выбор длины волны на точность фотометрических определений?
- 12. В чем сущность нефелометрического метода анализа? Особенности этого метода и область применения в агрохимии и почвоведении.
- 13. Турбидиметрический метода анализа, его особенности и область применения в агрохимии и почвоведении.
- 14. Физические основы атомно-абсорбционного спектрального анализа. Факторы, влияющие на точность метода.
- 15. Атомно-абсорбционные спектрофотометры: основные блоки прибора, принцип работы
- 16. Эмиссионные спектры, их происхождение. Сущность эмиссионного спектрального анализа, факторы, влияющие на точность метода.
- 17. Пламенная фотометрия: сущность метода, аппаратура и применение в агрохимическом анализе.
- 18.Сущность хроматографии. Какие признаки положены в основу классификации хроматографических методов анализа?
- 19. Дать определение понятий: сорбция, десорбция, сорбент, элюент, элюат. Примеры протекания этих процессов в почве, при внесении удобрений.
- 20. Объясните принципы адсорбционной, распределительной и ионообменной хроматографии. Область применения этих видов хроматографии.
- 21. Теоретические основы газовой хроматографии, её виды.

- 22. Основные хроматографические системы, указать их отличительные признаки, область применения, метрологические характеристики.
- 23. Принципы основных способов разделения многокомпонентных смесей в хроматографии: фронтальный, вытеснительный, элюентный.
- 24. Дать определение понятий: хроматограмма, ширина зоны, высота пика, удерживаемый объем, время удерживания. Привести пример хроматограммы.
- 25. Коэффициент распределения, коэффициент разделения основные показатели разделения смеси веществ. Как находят эти величины?
- 26. Что характеризует селективность в хроматографии? Какие факторы влияют на нее?
- 27. Основные хроматографические характеристики, обеспечивающие разделение многокомпонентных смесей.
- 28. Какие сорбенты используют в ионообменной хроматографии? Укажите наиболее широко используемые иониты, способы подготовки их к работе.
- 29. Методика анализа в ионообменной хроматографии: основные операции, количественное определение компонентов в элюате.
- 30. Какие требования предъявляют к газу-носителю в газовой хроматографии? Какие газы используют в этом качестве?
- 31. В чем заключаются особенности сорбентов, используемых в газовой хроматографии?
- 32. Приведите схему газового хроматографа, указав основные блоки, их назначение.
- 33. Объясните сущность методики анализа в бумажной и тонкослойной хроматографии, приведите примеры.
- 34. Высокоэффективная жидкостная хроматография: сущность метода, аппаратура, область применения.

Практические задания для зачета

1. Железо (III) определяют в растительной пробе после её озоления в виде комплексов желтого цвета с сульфасалициловой кислотой, при рН 8-

Те ньо₄с₆н₃ соо 10, фотометрическим методом.

Для построения калибровочной кривой были определены оптические плотности следующих растворов:

$C(Fe^{3+})$,моль/л	1.10-5	5.10-5	10.10-5	15.10-5
D	0.35	0.55	0.75	0.95

Построить калибровочный график и вычислить содержание железа в 100 мл азотнокислого раствора золы растений озимой пшеницы, если оптическая плотность равна 0,68.

- 2. Определите при каких длинах волн целесообразнее измерять оптическую плотность, при определении содержания кадмия в почве фотометрическим методом, если исследуют раствор комплекса кадмия с дитизоном ярко красного цвета.
- 3.Определить молярный показатель поглощения для марганца в виде КМпО₄, если при $\lambda = 520$ нм, $C_{Mn} = 5 \cdot 10^{-4}$ моль/л, D = 0.22, l = 2 см.

4. При измерении интенсивности люминесценции растворов получены данные:

С, мкг/10мл	X	<i>x</i> +5	x+10	x+15
І, мкА	0,20	0,29	0,41	0,53

Найти концентрацию вещества в растворе.

- 5. Опишите основные этапы определения содержания ионов железа (III) в растворе фотометрическим методом.
- 6. Найдите концентрацию железа, определяемого нефелометрическим методом, если: $I_x = 15$ мкA, навеска почвы 10 г, объем вытяжки 20мл.

Для стандартных растворов получены данные:

С, %	0,05	0,1	0,25	0,5
І, мкА	3	7,5	16,0	28,5

7. При колориметрическом титровании 10 мл раствора соли Fe^{2+} 0,1н раствором комплексона (III) при рH=2.4 были получены данные:

7	V_{κ} , мл	0	2	4	6	8
	D	0,71	0,45	0,19	0	0

Рассчитать содержание Fe (II) в растворе.

- 8. Пропускание Т испытуемого раствора равно 83,2 %. Какова оптическая плотность данного раствора?
- 9. Нефелометрическое титрование: сущность метода, техника выполнения, вид кривых титрования. Использование нефелометрии а агроэкологии.
- 10. Резонансное поглощение света. Укажите линии резонансного поглощения: меди, цинка, свинца. Подберите оптимальные условия определения этих элементов атомно абсорбционным методом.
- 11. Сущность метода дифференциальной спектрофотометрии. Область применения при анализе природных проб.
 - 12. Опишите методику пламенно-фотометрического определения калия в почвах.
- 13. При флуориметрическом определении концентрации Al^{3+} (10 мл раствора) получены значения интенсивности излучения:

$C(Al^{3+})$, мкг/10мл	0,04	0,06	0,08	x
I, мкА	11	17	23	19

Рассчитать концентрацию алюминия в растворе.

14. При измерении интенсивности люминесценции растворов получены данные (раствор соли Al^{3+}):

C(Al³+), мкг/10мл	0	x	x + 0.03	x + 0.05
І, мкА	2	10	16	20

Найти концентрацию алюминия в растворе.

- 15. Методы определения концентрации вещества в видимой и У Φ областях: сущность, достоинства и недостатки каждого метода.
- 16. Детекторы газовой хроматографии. Принцип действия катарометров и денситометров, область их применения.
- 17. При разделении ртути, кадмия и меди на целлюлозе коэффициенты движения оказались следующими:

$$R_f(Hg) = 1,00;$$
 $R_f(Cd) = 0,82;$ $R_f(Cu) = 0,92.$

Найдите пути движения каждого иона, если фронт элюента 15 см. Изобразите хроматограмму, указав на ней положение каждого иона.

- 18. Через колонку анионита в гидроксид-форме пропустили раствор хлорида натрия. На титрование полученного элюата в объеме 75 мл израсходовали 8,4 мл 0,1н раствора хлороводородной кислоты. Рассчитайте массу сорбированных хлорид-ионов из раствора соли, составьте схему ионообменной сорбции.
- 19. Рассчитайте коэффициенты движения хлорфенолов, если при разделении их с бензолом получили следующую хроматограмму (TCX): фронт бензола 12 см; путь 3 хлорфенола 9,4 см; путь 2,4 дихлорфенола 7,3 см; 2,4,6 трихлорфенола 4,2 см, пентахлорфенола 1,1 см. Изобразите схему хроматограммы.
- 20. Что такое элюент (растворитель) и проявитель в распределительной хроматографии? Для разделения ртути и кадмия использовали различные элюенты и получили следующие значения коэффициентов движения R_f :

a) этанол – 5M HCI (90:10)	$R_f(Hg) = 0.97; R_f(Cd) = 0.93$

б) этанол - бутанол – аце-	
тон -	
вода – пиридин – HNO ₃ –	$R_f(Hg) = 1,00; R_f(Cd) = 0,89$
HCI	
(22:10 : 11:28:1 :	
1:12)	

Какой элюент дает более четкое разделение? Влияет ли проявитель на процесс разделения?

21. При исследовании сорбции ионов марганца (II), меди и кобальта из аммиачноцитратных растворов на катионите КУ-1 в аммонийной форме получены следующие значения коэффициентов распределения:

$$K_p(Mn) = 0.586;$$
 $K_p(Cu)=159.75;$ $K_p(Co)=2.5.$

Сделайте вывод о возможности разделения этих ионов при указанных условиях, рассчитав коэффициенты разделения. Чем объясняется различие сорбции?

22. Что такое порог чувствительности детектора? Ниже указаны значения порога чувствительности некоторых газохроматографических детекторов:

```
катарометр -10^{-3}-10^{-5} мг/мл; пламенно – ионизационный -10^{-9}-10^{-12} мг/с; термоионный -10^{-4}-10^{-6} мг/мл; по захвату электронов -3\cdot 10^{-11} мг/с;
```

Опишите принцип действия указанных детекторов, область применения, укажите наиболее чувствительный из них.

- 23. Что такое неподвижная жидкая фаза и твердый носитель в газо-жидкостной хроматографии? Укажите наиболее широко применяемые вещества для этих целей. Какое влияние оказывает температура на разделение смеси в газовой хроматографии?
- 24. В чем отличие высокоэффективной жидкостной хроматографии от обычной жидкостной? Изобразите схему хроматографа для ВЭЖХ.
- 25. Опишите методику анализа смеси органических растворителей методом газожидкостной хроматографии.
- 26. В чем сущность ионообменного метода определения цинка в почвах? Составьте схему ионообменного процесса сорбции цинка на анионите из 1н раствора HCl и процесса десорбции 0,01н раствором хлороводородной кислоты.
- 27. Опишите методику количественного определения аминокислот методом бумажной хроматографии.

28. Рассчитать содержание (%) газов в смеси по данным, полученным при газовой хроматографии смеси:

inpomaror pagini on							
Газ	C_2H_6	C_3H_8	C_4H_{10}	C_5H_{12}			
Площадь пика, V	5	7	5	4			
k	0,60	0,77	1,00	1,11			

- 29. Влияет ли проявитель на ход разделения в бумажной хроматографии? Принцип выбора проявителя. Для каких ионов можно использовать в качестве проявителя сероводород?
- 30. Что такое гель хроматография? Почему этот вид хроматографии используют в анализе почв для классификации гуминовых веществ? Какие носители применяют в гель хроматографии?

7.4 Методические материалы, определяющие процедуры оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций

Процедура оценивания знаний, умений, навыков, характеризующие этапы формирования компетенций проводится в соответствии с Пл КубГАУ 2.5.1 «Текущий контроль успеваемости и промежуточная аттестация обучающихся».

7.4.1 Рефераты

Реферат — продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее.

Критериями оценки реферата являются: новизна текста, обоснованность выбора источников литературы, степень раскрытия сущности вопроса, соблюдения требований к оформлению.

Оценка «отлично» — выполнены все требования к написанию реферата: обозначена проблема и обоснована её актуальность; сделан анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция; сформулированы выводы, тема раскрыта полностью, выдержан объём; соблюдены требования к внешнему оформлению.

Оценка «**хорошо**» — основные требования к реферату выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала; отсутствует логическая последовательность в суждениях; не выдержан объём реферата; имеются упущения в оформлении.

Оценка «удовлетворительно» — имеются существенные отступления от требований к реферированию. В частности: тема освещена лишь частично; допущены фактические ошибки в содержании реферата; отсутствуют выводы.

Оценка «**неудовлетворительно**» — тема реферата не раскрыта, обнаруживается существенное непонимание проблемы или реферат не представлен вовсе.

Критерии оценки знаний обучающихся при выступлении с докладом

Показатель	Градация	Баллы
Соответствие доклада заявлен-	соответствует полностью	2
ной теме, цели и задачам про-	есть несоответствия (отступления)	1
екта	в основном не соответствует	0
Структурированность (органи-	структурировано, обеспечивает	2
зация) доклада, которая обес-	структурировано, не обеспечивает	1
печивает понимание его содер-	не структурировано, не обеспечивает	0
жания		
Культура выступления – чте-	рассказ без обращения к тексту	2
ние с листа или рассказ, обра-	рассказ с обращением тексту	1
щённый к аудитории	чтение с листа	0
Доступность доклада о содер-	доступно без уточняющих вопросов	2
жании проекта, его целях, зада-	доступно с уточняющими вопросами	1
чах, методах и результатах	недоступно с уточняющими вопросами	0
Целесообразность, инструмен-	целесообразна	2
тальность наглядности, уро-	целесообразность сомнительна	1
вень её использования	не целесообразна	0

Соблюдение временного ре-	соблюдён (не превышен)	2
гламента доклада (не более 7	превышение без замечания	1
минут)	превышение с замечанием	0
Чёткость и полнота ответов на	все ответы чёткие, полные	2
дополнительные вопросы по	некоторые ответы нечёткие	1
существу доклада	все ответы нечёткие/неполные	0
Владение специальной терми-	владеет свободно	2
нологией по теме проекта, ис-	иногда был неточен, ошибался	1
пользованной в докладе	не владеет	0
Культура дискуссии – умение	ответил на все вопросы	2
понять собеседника и аргумен-	ответил на большую часть вопросов	1
тировано ответить на его во-	не ответил на большую часть вопросов	0
просы		

Шкала оценки знаний обучающихся при выступлении с докладом:

Оценка «отлично» – 15-18 баллов.

Оценка «**хорошо**» – 13-14 баллов.

Оценка «**удовлетворительно**» — 9-12 баллов.

Оценка «**неудовлетворительно**» — 0-8 баллов.

7.4.2. Контрольные работы

Критериями оценки контрольной работы является: степень раскрытия сущности вопроса, позволяющей судить об освоении студентом темы или раздела.

Оценка «отлично» — выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания вопросов контрольной работы и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений.

Оценка «**хорошо**» — выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности, которые может устранить с помощью дополнительных вопросов преподавателя.

Оценка «удовлетворительно» — выставляется студенту, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными понятиями выносимых на контрольную работу тем, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации.

Оценка «неудовлетворительно» — выставляется студенту, который не знает большей части основного содержания выносимых на контрольную работу вопросов тем дисциплины, допускает грубые ошибки в формулировках основных понятий и не умеет использовать полученные знания при решении типовых практических задач.

7.4.3 Тестовые задания

Тесты – это система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений студента.

Критерии оценки знаний студентов при проведении тестирования

Оценка «отлично» выставляется при условии правильного ответа студента не менее чем 85 % тестовых заданий;

Оценка «**хорошо**» выставляется при условии правильного ответа студента не менее чем 70 % тестовых заданий;

Оценка «удовлетворительно» выставляется при условии правильного ответа студента не менее 51 %;

Оценка «неудовлетворительно» выставляется при условии правильного ответа студента менее чем на 50 % тестовых заданий.

7.4.4 Критерии оценки на зачете

Заключительный контроль (промежуточная аттестация) подводит итоги изучения дисциплины «Инструментальные методы анализа в мониторинге объектов окружающей среды».

Учебным планом по данной дисциплине предусмотрен зачет.

Вопросы, выносимые на экзамен, доводятся до сведения студентов за месяц до сдачи зачета.

Контрольные требования и задания соответствуют требуемому уровню усвоения дисциплины и отражают ее основное содержание.

Контроль освоения дисциплины и оценка знаний обучающихся на экзамене производится в соответствии с Пл КубГАУ 2.5.1 «Текущий контроль и успеваемости и промежуточная аттестация обучающихся».

Оценка «зачтено» выставляется обучающемуся, который:

- Обладает всесторонними, систематизированными и глубокими знаниями материала учебной программы, умеет свободно выполнять задания, предусмотренные учебной программой, усвоил основную и ознакомился с дополнительной литературой, рекомендованной учебной программой. Оценка «зачтено» выставляется обучающемуся усвоившему взаимосвязь основных положений и понятий дисциплины в их значении для приобретаемой специальности, проявившему творческие способности в понимании, изложении и использовании учебного материала, правильно обосновывающему принятые решения, владеющему разносторонними навыками и приемами выполнения лабораторных работ.
- Обнаружившему полное знание материала учебной программы, успешно выполняющему предусмотренные учебной программой задания, усвоившему материал основной литературы, рекомендованной учебной программой. Показавшему систематизированный характер знаний по дисциплине, способному к самостоятельному пополнению знаний в ходе дальнейшей учебной и профессиональной деятельности, правильно применяющему теоретические положения при решении практических вопросов и задач, владеющему необходимыми навыками и приемами выполнения лабораторных работ.
- Показывает знание основного материала учебной программы в объеме, достаточном и необходимым для дальнейшей учебы и предстоящей работы по специальности, справился с выполнением заданий, предусмотренных учебной программой, знаком с основной литературой, рекомендованной учебной программой. Оценка «зачтено» выставляется обучающемуся, допустившему погрешности в ответах на зачете или выполнении эзачетных заданий, но обладающему необходимыми знаниями под руководством преподавателя для устранения этих погрешностей, нарушающему последовательность в изложении учебного материала и испытывающему затруднения при выполнении лабораторных работ.

Оценка «не зачтено» выставляется обучающемуся, не знающему основной части материала учебной программы, допускающему принципиальные ошибки в выполнении предусмотренных учебной программой заданий, неуверенно с большими затруднениями выполняющему лабораторные работы. Как правило, оценка «не зачтено» выставляется обучающемуся, который не может продолжить обучение или приступить к деятельности по специальности по окончании университета без дополнительных занятий по соответствующей дисциплине.

8 Перечень основной и дополнительной учебной литературы

Основная учебная литература

- 1. Александрова Э. А. Аналитическая химия. Теоретические основы и лабораторный практикум: учеб. пособие. Кн. 2: Физико-химические методы анализа / Э. А. Александрова, Н. Г. Гайдукова. М.: КолосС, 2011. 351 с. ISBN 978-5-9532-0742-3
- 2. Александрова Э.А. Аналитическая химия : учеб. и практикум для прикл. бакалавриата. Кн. 2 : Физико-химические методы анализа / Э. А. Александрова, Н. Г. Гайдукова; Куб. гос. аграр. ун-т. - 2-е изд., испр. и доп. - М. : Юрайт, 2014. - 355 с. - УМО. - ISBN 978-5-9916-4234-7
- 3. Теоретические основы физико—химических методов анализа : учеб. пособие / Е. А. Кайгородова [и др.]. Краснодар : КубГАУ, 2014. 187 с. ISBN 978-5-94672-875-1.
 https://edu.kubsau.ru/file.php/ 105/teoreticheskie_osnovy_fiziko-khimicheskikh_metodov_analiza.pdf

Дополнительная учебная литература

- 1. Александрова Э. А. Хроматографический анализ в агроэкологии. Электронное учебное пособие для студентов высших учебных заведений. / Э.А. Александрова, Н.Г. Гайдукова. Краснодар. 2012. 193 с. https://edu.kubsau.ru/file.php/105/03_03.07.13/13_KHromatograficheskii_analiz_v_agroehkolog_ii.AleksandrovaEHA.GaidukovaNG.pdf
- 2. Гайдукова Н. Г. Инструментальные методы исследования в агроэкологии : учеб. пособие / Н. Г. Гайдукова, И. В. Шабанова; под общ. ред. Н.Г. Гайдуковой; Куб. гос. аграр. ун-т. Краснодар, 2015. 301 с. ISBN 978-5-94672-968-0
- 3.Физико-химические методы анализа : лаб. практикум / Е. А. Кайгородова Н. Е. Косянок, С. А. Пестунова, Д. В. Гавриленко. Краснодар : КубГАУ, 2017. 118 с. https://edu.kubsau.ru/file.php/105/Praktikum_ FKHMA_ehkologi_gotov.pdf
- 4. Лабораторный практикум по физико-химическим методам анализа : учеб. пособие / Н.Г. Гайдукова, Н.А. Кошеленко, И.И. Сидорова, И.В. Шабанова. Изд. 2-е, перераб. и доп. Краснодар, 2010. 478 с.

9 Перечень ресурсов информационно-телекоммуникационной сети «Интернет» – ЭБС:

No	Наименование ресурса	Тематика
1	Образовательный портал КубГАУ	Универсальная

Рекомендуемые интернет сайты:

- 1. http://ru.wikipedia.org электронная энциклопедия.
- 2. http://studentam.net электронная библиотека учебников.
- 3. www.dissercat.ru электронная библиотека диссертационных работ.

10 Методические указания для обучающихся по освоению дисциплины

1. Физико-химические методы анализа : учеб. пособие / Н. Г. Гайдукова, Н. А. Ко-шеленко, И. И. Сидорова, И.В. Шабанова - 3-е изд., испр. и доп. - Краснодар : КубГАУ, 2015. - 315 с. - МСХ. - ISBN 978-5-94672-926-0 - 32 экз http://elib.kubsau.ru/MegaPro/Web/SearchResult/ToPage/1

11 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине позволяют: обеспечить взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие посредством сети «Интернет»; фиксировать ход образовательного процесса, результатов промежуточной аттестации по дисциплине и результатов освоения образовательной программы; организовать процесс образования путем визуализации изучаемой информации посредством использования презентаций, учебных фильмов; контролировать результаты обучения на основе компьютерного тестирования.

11.1 Перечень лицензионного ПО

No	Наименование	Краткое описание
1	Microsoft Windows	Операционная система
2	Microsoft Office (включает Word, Excel, PowerPoint)	Пакет офисных приложе-
		ний

11.2Перечень профессиональных баз данных и информационных справочных систем

№	Наименование	Тематика	Электронный адрес
1	Научная электронная библио-	Универсальная	https://elibrary.ru/
	тека eLibrary		

^{11.3} Доступ к сети Интернет, доступ в электронную информационно-образовательную среду университета.

12. Материально-техническое обеспечение обучения по дисциплине для лиц с **ОВЗ** и инвалидов

Планируемые помещения для проведения всех видов учебной деятельности

Входная группа в главный учебный корпус и корпус зооинженерного факультета оборудован пандусом, кнопкой вызова, тактильными табличками, опорными поручнями, предупреждающими знаками, доступным расширенным входом, в корпусе есть специально оборудованная санитарная комната. Для перемещения инвалидов и ЛОВЗ в помещении имеется передвижной гусеничный ступенькоход. Корпуса оснащены противопожарной звуковой и визуальной сигнализацией.

$N_{\underline{0}}$	Наименование учебных	Наименование помещений для	Адрес (местоположение) по-
Π /	предметов, курсов, дис-	проведения всех видов учебной	мещений для проведения всех
П	циплин (модулей),	деятельности, предусмотренной	видов учебной деятельности,
	практики, иных видов	учебным планом, в том числе по-	предусмотренной учебным
	учебной деятельности,	мещения для самостоятельной	планом (в случае реализации
	предусмотренных учеб-	работы, с указанием перечня ос-	образовательной программы в
	ным планом образова-	новного оборудования, учебно-	сетевой форме дополнительно
	тельной программы	наглядных пособий и используе-	указывается наименование ор-
		мого программного обеспечения	ганизации, с которой заключен
			договор)
1	2	3	4
	Инструментальные ме-	Помещение №221 ГУК, площадь	350044, Краснодарский край,
	тоды анализа в монито-	— 101м ² ; посадочных мест — 95;	г. Краснодар, ул. им. Кали-
	ринге объектов окружа-	учебная аудитория для проведе-	нина, 13
	ющей среды	ния учебных занятий, в том числе	

	T
для обучающихся с инвалидно-	
стью и ОВЗ	
технические средства обучения	
наборы демонстрационного обо-	
рудования и учебно-наглядных	
пособий (ноутбук, проектор	
экран), в т.ч для обучающихся с	
инвалидностью и OB3	
программное обеспечение	
Windows, Office	
специализированная ме-	
бель(учебная доска, учебная ме-	
бель), в т.ч для для обучающихся	
с инвалидностью и ОВЗ.	
Помещение №114 300, площады	
— 43м ² ; посадочных мест — 25	
учебная аудитория для проведе-	
ния учебных занятий, в том числе	
для обучающихся с инвалидно-	
стью и ОВЗ	
специализированная ме-	
бель(учебная доска, учебная ме-	
бель), в том числе для обучаю-	
щихся с инвалидностью и ОВЗ	
пцихел с инвалидноствю и ОВЗ	

13. Особенности организации обучения лиц с ОВЗ и инвалидов

Для инвалидов и лиц с OB3 может изменяться объём дисциплины (модуля) в часах, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося (при этом не увеличивается количество зачётных единиц, выделенных на освоение дисциплины).

Фонды оценочных средств адаптируются к ограничениям здоровья и восприятия информации обучающимися.

Основные формы представления оценочных средств — в печатной форме или в форме электронного документа.

Формы контроля и оценки результатов обучения инвалидов и лиц с ОВЗ

Категории	
студентов с	Форма контроля и оценки результатов обучения
ОВЗ и инва-	
лидностью	
С нарушением	– устная проверка: дискуссии, тренинги, круглые столы, собеседо-
зрения	вания, устные коллоквиумы и др.;
	- с использованием компьютера и специального ПО: работа с
	электронными образовательными ресурсами, тестирование, рефераты,
	курсовые проекты, дистанционные формы, если позволяет острота зре-
	ния - графические работы и др.;
	при возможности письменная проверка с использованием рельефно-
	точечной системы Брайля, увеличенного шрифта, использование спе-

	циальных технических средств (тифлотехнических средств): кон-
	трольные, графические работы, тестирование, домашние задания, эссе,
	отчеты и др.
С нарушением	– письменная проверка: контрольные, графические работы, тести-
слуха	рование, домашние задания, эссе, письменные коллоквиумы, отчеты и
	др.;
	- с использованием компьютера: работа с электронными образо-
	вательными ресурсами, тестирование, рефераты, курсовые проекты,
	графические работы, дистанционные формы и др.;
	при возможности устная проверка с использованием специальных
	технических средств (аудиосредств, средств коммуникации, звукоуси-
	ливающей аппаратуры и др.): дискуссии, тренинги, круглые столы, со-
	беседования, устные коллоквиумы и др.
С наруше-	- письменная проверка с использованием специальных техниче-
нием	ских средств (альтернативных средств ввода, управления компьюте-
опорно-	ром и др.): контрольные, графические работы, тестирование, домашние
двигательного	задания, эссе, письменные коллоквиумы, отчеты и др.;
аппарата	- устная проверка, с использованием специальных технических
	средств (средств коммуникаций): дискуссии, тренинги, круглые столы,
	собеседования, устные коллоквиумы и др.;
	- с использованием компьютера и специального ПО (альтернатив-
	ных средств ввода и управления компьютером и др.): работа с элек-
	тронными образовательными ресурсами, тестирование, рефераты, кур-
	совые проекты, графические работы, дистанционные формы предпо-
	чтительнее обучающимся, ограниченным в передвижении и др.

Адаптация процедуры проведения промежуточной аттестации для инвалидов и лиц с OB3:

В ходе проведения промежуточной аттестации предусмотрено:

- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей;
 - увеличение продолжительности проведения аттестации;
- возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).

Формы промежуточной аттестации для инвалидов и лиц с OB3 должны учитывать индивидуальные и психофизические особенности обучающегося/обучающихся по AAAAO-ПОП ВО (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.).

Специальные условия, обеспечиваемые в процессе преподавания дисциплины Студенты с нарушениями зрения

– предоставление образовательного контента в текстовом электронном формате, позволяющем переводить плоскопечатную информацию в аудиальную или тактильную форму;

- возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента;
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- использование чёткого и увеличенного по размеру шрифта и графических объектов в мультимедийных презентациях;
- использование инструментов «лупа», «прожектор» при работе с интерактивной доской;
- озвучивание визуальной информации, представленной обучающимся в ходе занятий;
- обеспечение раздаточным материалом, дублирующим информацию, выводимую на экран;
- наличие подписей и описания у всех используемых в процессе обучения рисунков и иных графических объектов, что даёт возможность перевести письменный текст в аудиальный,
- обеспечение особого речевого режима преподавания: лекции читаются громко, разборчиво, отчётливо, с паузами между смысловыми блоками информации, обеспечивается интонирование, повторение, акцентирование, профилактика рассеивания внимания;
- минимизация внешнего шума и обеспечение спокойной аудиальной обстановки;
- возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, на ноутбуке, в виде пометок в заранее подготовленном тексте);
- увеличение доли методов социальной стимуляции (обращение внимания, апелляция к ограничениям по времени, контактные виды работ, групповые задания и др.) на практических и лабораторных занятиях;
- минимизирование заданий, требующих активного использования зрительной памяти и зрительного внимания;
- применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы.

Студенты с нарушениями опорно-двигательного аппарата (маломобильные студенты, студенты, имеющие трудности передвижения и патологию верхних конечностей)

- возможность использовать специальное программное обеспечение и специальное оборудование и позволяющее компенсировать двигательное нарушение (коляски, ходунки, трости и др.);
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- применение дополнительных средств активизации процессов запоминания и повторения;
 - опора на определенные и точные понятия;
 - использование для иллюстрации конкретных примеров;
 - применение вопросов для мониторинга понимания;
 - разделение изучаемого материала на небольшие логические блоки;

- увеличение доли конкретного материала и соблюдение принципа от простого к сложному при объяснении материала;
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- увеличение доли методов социальной стимуляции (обращение внимания, аппеляция к ограничениям по времени, контактные виды работ, групповые задания др.);
- обеспечение беспрепятственного доступа в помещения, а также пребывания них;
- наличие возможности использовать индивидуальные устройства и средства, позволяющие обеспечить реализацию эргономических принципов и комфортное пребывание на месте в течение всего периода учёбы (подставки, специальные подушки и др.).

Студенты с нарушениями слуха (глухие, слабослышащие, позднооглохшие)

- предоставление образовательного контента в текстовом электронном формате, позволяющем переводить аудиальную форму лекции в плоскопечатную информацию;
- наличие возможности использовать индивидуальные звукоусиливающие устройства и сурдотехнические средства, позволяющие осуществлять приём и передачу информации; осуществлять взаимообратный перевод текстовых и аудиофайлов (блокнот для речевого ввода), а также запись и воспроизведение зрительной информации.
- наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;
- наличие наглядного сопровождения изучаемого материала (структурно-логические схемы, таблицы, графики, концентрирующие и обобщающие информацию, опорные конспекты, раздаточный материал);
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- обеспечение практики опережающего чтения, когда студенты заранее знакомятся с материалом и выделяют незнакомые и непонятные слова и фрагменты;
- особый речевой режим работы (отказ от длинных фраз и сложных предложений, хорошая артикуляция; четкость изложения, отсутствие лишних слов; повторение фраз без изменения слов и порядка их следования; обеспечение зрительного контакта во время говорения и чуть более медленного темпа речи, использование естественных жестов и мимики);
- чёткое соблюдение алгоритма занятия и заданий для самостоятельной работы (называние темы, постановка цели, сообщение и запись плана, выделение основных понятий и методов их изучения, указание видов деятельности студентов и способов проверки усвоения материала, словарная работа);
- соблюдение требований к предъявляемым учебным текстам (разбивка текста на части; выделение опорных смысловых пунктов; использование наглядных средств);
 - минимизация внешних шумов;
- предоставление возможности соотносить вербальный и графический материал;
 комплексное использование письменных и устных средств коммуникации при работе в группе;
- сочетание на занятиях всех видов речевой деятельности (говорения, слушания, чтения, письма, зрительного восприятия с лица говорящего).

Студенты с прочими видами нарушений (ДЦП с нарушениями речи, заболевания эндокринной, центральной нервной и сердечно-сосудистой систем, онкологические заболевания)

- наличие возможности использовать индивидуальные устройства и средства, позволяющие осуществлять приём и передачу информации;
- наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;
 - наличие наглядного сопровождения изучаемого материала;
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- обеспечение практики опережающего чтения, когда студенты заранее знакомятся с материалом и выделяют незнакомые и непонятные слова и фрагменты;
- предоставление возможности соотносить вербальный и графический материал; комплексное использование письменных и устных средств коммуникации при работе в группе;
- сочетание на занятиях всех видов речевой деятельности (говорения, слушания, чтения, письма, зрительного восприятия с лица говорящего);
 - предоставление образовательного контента в текстовом электронном формате;
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее подготовленном тексте).
- применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы,
- стимулирование выработки у студентов навыков самоорганизации и самоконтроля;
 - наличие пауз для отдыха и смены видов деятельности по ходу занятия.