Аннотация рабочей программы дисциплины «Железобетонные и каменные конструкции»

1 Цель и задачи освоения дисциплины

Целью освоения дисциплины «Железобетонные и каменные конструкции» является изучение основ проектирования, изготовления, монтажа, усиления железобетонных и каменных конструкций зданий и сооружений. Железобетонные конструкции являются основными строительными конструкциями с обширной областью применения, поэтому техническая подготовка обязательно должна включать углубленное изучение основ теории сопротивления железобетона и проектирования железобетонных конструкций зданий и сооружений.

Задачи

— развитие навыков проектирования и расчетов железобетонных и каменных конструкций, с учетом влияния предварительного напряжения арматуры; расчетов пространственных конструкций зданий и сооружений с учетом требований нормативной документации в строительстве; понимание принципов работы железобетонных конструкций и каменных конструкций, технологии их строительства, ремонта и реконструкции.

2 Перечень планируемых результатов по дисциплине, соотнесенных с планируемыми результатами образовательной программы

В результате освоения дисциплины обучающийся готовится к видам деятельности, в соответствии с образовательным стандартом ФГОС ВО 08.05.01 «Строительство уникальных зданий и сооружений».

В результате освоения дисциплины формируются следующие компетенции:

- ОПК-3 Способен принимать решения в профессиональной деятельности, используя теоретические основы, нормативно-правовую базу, практический опыт капитального строительства, а также знания о современном уровне его развития;
- ОПК-4 Способен разрабатывать проектную и распорядительную документацию, участвовать в разработке нормативных правовых актов в области капитального строительства;
- ОПК-6 Способен осуществлять и организовывать разработку проектов зданий и сооружений с учетом экономических, экологических и социальных требований и требований безопасности, способен выполнять технико-экономическое обоснование проектных решений зданий и сооружений, осуществлять техническую экспертизу проектов и авторский надзор за их соблюдением.

3. Содержание дисциплины

- В результате освоения дисциплины обучающиеся изучат теоретический и практический материал по следующим темам:
- 1. Свойства бетона, железобетона. Основные физико-механические свойства бетона, стальной арматуры, железобетона: прочность бетона и его деформативные свойства, при кратковременном и длительном действии нагрузки. Классы прочности бетона при сжатии и растяжении бетона. Арматура. Арматура, назначение, прочностные и деформативные свойства. Классы и марки арматурных сталей. Арматурные сварные изделия. Закладные детали;
- 2. Свойства железобетона. Основные физико-механические свойства железобетона. Сцепление арматуры с бетоном. Анкеровка арматуры. Защитный слой бетона, факторы влияющие на назначение толщины защитного слоя бетона;

- 3. Методы расчета железобетонных конструкций. Экспериментальные основы теории железобетона и методы расчета железобетонных конструкций. Три стадии напряженно-деформированного состояния нормативных сечений;
- 4. Нормативные и расчетные характеристики бетона. Коэффициент; нормативные и расчетные характеристики бетона. Три категории трещиностойкости ЖБК. Предварительное напряжение в арматуре и бетоне. Потери предварительного напряжения. Усилия обжатия бетона;
- 5. Расчета прочности нормальных сечений ЖБ элементов. Общий случай расчета прочности нормальных сечений ЖБ элементов. Изгибаемые элементы с одиночным армированием. То же с двойным армированием. Расчет и конструирование. Особенности предельного состояния наклонного сечения. Расчет прочности наклонного сечения. Расчет колонны Расчет колонны и эскизные конструирования. Расчет фундамента и эскизные конструирования;
- 6. Растянутые элементы. Прочность при случайных эксцентриситетах, больших и малых эксцентриситетах, косвенное армирование. Растянутые элементы. Трещиностойкость и перемещения ЖБ элементов. Трещиностойкость и перемещения ЖБ элементов. Каменная кладка. Основы расчета каменной кладки. Проектирование каменных конструкций. Зимняя кладка;
- 7. Железобетонные конструкции многоэтажных промышленных и гражданских зданий. Железобетонные конструкции многоэтажных промышленных и гражданских зданий. Компоновка конструктивных схем зданий каркасных, бескаркасных и комбинированных систем:
- 8. Плоские перекрытия балочные и безбалочные. Монолитные и сборные ребристые перекрытия. Плоские безбалочные монолитные и из сборных элементов;
- 9. Конструкции ригелей балочных перекрытий. Расчет и конструирование Железобетонные фундаменты мелкого заложения;
- 10. Конструкции одноэтажных сельскохозяйственных и промышленных зданий. Конструкции одноэтажных сельскохозяйственных и промышленных зданий. Поперечные и продольные рамы. Расчетные схемы. Определение усилий. Плиты покрытия. Балки, фермы. Арки, колонны. Фундаменты;
- 11. Пространственные конструкции Пространственные конструкции: складки, купола, тонкостенные своды, цилиндрические оболочки. Конструктивные решения, принципы расчета. Пространственные тонкостенные конструкции;
- 12. Особенности расчета тонких оболочек. Безмоментная теория оболочек. Пологие оболочки. Цилиндрические оболочки. Конструктивные решения. Схемы армирования. Практические методы расчета складки, купола, висячие оболочки, тонкостенные своды, конструктивные решения, принципы расчета;
- 13. Резервуары, водонапорные башни, подпорные стены;
- 14. Резервуары: цилиндрические, прямоугольные. Водонапорные башни. Подпорные стены. Бункеры и силоса. Принципы расчета и конструирования;
- 15. Сейсмические нагрузки. Особенности определения сейсмических нагрузок на здание. Реконструкция зданий и сооружений;
- 16. Усиление ж/б конструкций путем наращивания размеров, устройство обоим и рубашек, установки дополнительной арматуры;
- 17. Усиление путем изменения статической схемы конструкций с помощью дополнительных опор, затяжек, распорок, шпренгелей и т.п.;
- 18. Экологические особенности при реконструкции зданий и сооружений.

4. Трудоемкость дисциплины и форма промежуточной аттестации

Объем дисциплины 396 часов, 11 зачетных единиц. По итогам изучаемой дисциплины студенты (обучающиеся) сдают экзамен и выполняют курсовую работу в 8 семестре, сдают экзамен и выполняют курсовой проект в 9 семестре.

Дисциплина изучается на 4 и 5 курсе, в 8 и 9 семестре